Polynomials with a Parabolic Majorant and the Duffin-Schaeffer Inequality

Q. I. Rahman and A. O. Watt
Département de Mathématiques et de Statistique, Université de Montréal. Montréal, Québec, Canada H3C3J7

Communicated by T. J. Rivlin
Received December 14, 1990

For $y \in \mathbb{R}$ let $I_{y}:=\{x+i y:-1 \leqslant x \leqslant 1\}$. It was proved by R. J. Duffin and A. C. Schaeffer that if $p(x):=\sum_{v=0}^{n} a_{v} x^{n}$ is a polynomial of degree at most n with real coefficients such that $|p(\cos (v \pi / n))| \leqslant 1$ for $v=0,1, \ldots, n$ and T_{n} is the nth Chebyshev polynomial of the first kind then $\max _{z \in I_{r}}\left|p^{(k)}(z)\right| \leqslant\left|T_{n}^{(k)}(1+i y)\right|$ for $k=1,2, \ldots$. To this we add that if $\tau_{n+2}(z):=\left(1-z^{2}\right) T_{n}(z)$ then $\max _{2 \in I_{1}}| |\left(d^{k} / d z^{k}\right)\left(\left(1-z^{2}\right) p(z)\right)\left|\leqslant\left|\tau \tau_{n+2}^{(k)}(1+i y)\right|\right.$ for $k=3,4, \ldots$. The result can be looked upon as an inequality for polynomials with a parabolic majorant, analogous to that of Duffin and Schaeffer. 1992 Academic Press, Inc.

1. Introduction

Let us denote by $\|\cdot\|$ the maximum norm on $[-1,+1]$ and by \mathscr{P}_{n} the set of all polynomials of degree at most n. For p belonging to \mathscr{P}_{n} and vanishing at $-1,+1$ let

$$
\|p\|_{*}:=\sup _{-1<x<1} \frac{|p(x)|}{\sqrt{1-x^{2}}} ; \quad\|p\|_{* *}:=\sup _{-1<x<1} \frac{|p(x)|}{1-x^{2}} .
$$

Further, let $T_{n}(x):=\cos (n \operatorname{arc} \cos x)$ be the nth Chebyshev polynomial of the first kind and $U_{m}(x):=\sin ((m+1) \arccos x) / \sin (\arccos x)$ the m th Chebyshev polynomial of the second kind. We also need to introduce the polynomials

$$
v_{n}(x):=\left(1-x^{2}\right) U_{n-2}(x), \quad \tau_{n}(x):=\left(1-x^{2}\right) T_{n-2}(x) .
$$

Let $p \in \mathscr{P}_{n}$. According to a classical result of W. A. Markoff [2]

$$
\begin{equation*}
\left\|p^{(k)}\right\| \leqslant T_{n}^{(k)}(1) \quad \text { for all } \quad k \in \mathbb{N} \quad \text { if } \quad\|p\| \leqslant 1 \tag{1}
\end{equation*}
$$

It is also known $[6,3]$ that

$$
\begin{array}{lll}
\left\|p^{(k)}\right\| \leqslant\left|v_{n}^{(k)}(1)\right| & \text { for all } k \in \mathbb{N} & \text { if }\|p\|_{*} \leqslant 1 \\
\left\|p^{(k)}\right\| \leqslant\left|\tau_{n}^{(k)}(1)\right| & \text { for } k=2,3, \ldots & \text { if }\|p\|_{* *} \leqslant 1 \tag{3,1}
\end{array}
$$

As regards the missing case $k=1$, when $\|p\|_{* *} \leqslant 1$ we have [5]

$$
\begin{array}{ll}
\left\|p^{\prime}\right\| \leqslant\left|\tau_{n}^{\prime}(1)\right| & \text { if } n=4 \\
\left\|p^{\prime}\right\| \leqslant\left|\tau_{n}^{\prime}(0)\right| & \text { for odd } n \geqslant 5 \tag{3.3}
\end{array}
$$

whereas for even n

$$
\begin{equation*}
\left\|p^{\prime}\right\| \leqslant n-2-\frac{\pi^{2}}{8 n}+O\left(n^{-2}\right) \quad \text { as } \quad n \rightarrow \infty \tag{3,4}
\end{equation*}
$$

Here it may be added that $\left|\tau_{n}^{\prime}(\pi / 2(n-2))\right|=n-2-\pi^{2} / 8 n+G\left(n^{-2}\right)$ as $n \rightarrow \infty$.

A remarkable generalization of (1) was found by Duffin and Schaeffer who proved (see [1, Theorem II] or [8, pp. 130-138]):

Theorem A. Let $p \in \mathscr{P}_{n}$. If $p(x)$ is real for real x and if

$$
\begin{equation*}
\left|p\left(\cos \frac{v \pi}{n}\right)\right| \leqslant 1 \quad \text { for } \quad v=0,1, \ldots, n, \tag{4}
\end{equation*}
$$

then for $k \in \mathbb{N}$

$$
\begin{equation*}
\left|p^{(k)}(x+i y)\right| \leqslant\left|T_{n}^{(k)}(1+i y)\right|, \quad-1 \leqslant x \leqslant 1, \quad-\infty<y<\infty . \tag{5}
\end{equation*}
$$

The corresponding extension of (2) which was obtained in [7] reads as follows:

Theorem B. Let

$$
\begin{equation*}
\zeta_{0}:=1, \quad \zeta_{n}:=-1, \quad \text { and } \quad \zeta_{v}:=\cos \left(\frac{2 v-1}{n-1} \frac{\pi}{2}\right), \quad i=1 . \ldots, n-1 \tag{6}
\end{equation*}
$$

If $p \in \mathscr{P}_{n}$ such that

$$
\begin{equation*}
\left|p\left(\xi_{v}\right)\right| \leqslant\left(1-\xi_{v}^{2}\right)^{1,2} \quad \text { for } \quad v=0,1, \ldots, n \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|p^{(k)}\right\| \leqslant\left\|v_{n}^{(k)}(1)\right\| \quad \text { for } \quad k=2,3, \ldots \tag{8}
\end{equation*}
$$

whereas

$$
\begin{equation*}
\left\|p^{\prime}\right\| \leqslant(n-1)\left(\frac{2}{\pi} \log (n-1)+3\right) \tag{9}
\end{equation*}
$$

Further, if $p(x)$ is real for real x then
$\left|p^{(k)}(x+i y)\right| \leqslant\left|0_{n}^{(k)}(1+i y)\right| \quad$ for $\quad(x, y) \in[-1,1] \times \mathbb{R} \quad$ and $\quad k=2,3 \ldots$.

In (8), (8') equality holds if and only if $p(x) \equiv \gamma v_{n}(x)$ where $|\gamma|=1$. Besides, the number $2 / \pi$ appearing on the right hand side of (9) cannot be replaced by any smaller number not depending on n.

Here we prove
Theorem 1. For given $n \geqslant 3$, let

$$
\begin{equation*}
\lambda_{v}=\lambda_{n, v}:=\cos \left(\frac{v \pi}{n-2}\right), \quad v=0,1, \ldots, n-2 \tag{10}
\end{equation*}
$$

If $p(x):=\left(1-x^{2}\right) q(x)$ is a polynomial of degree at most n such that

$$
\begin{equation*}
\left|q\left(\lambda_{v}\right)\right| \leqslant 1 \quad \text { for } \quad v=0,1, \ldots, n-2 \tag{11}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|p^{(k)}\right\| \leqslant\left|\tau_{n}^{(k)}(1)\right| \quad \text { for } \quad k=3,4, \ldots \tag{12}
\end{equation*}
$$

Further, if $p(x)$ is real for real x, then

$$
\left|p^{(k)}(x+i y)\right| \leqslant\left|\tau_{n}^{(k)}(1+i y)\right| \quad \text { for } \quad(x, y) \in[-1,1] \times \mathbb{R} \text { and } k=3,4 \ldots
$$

2. Auxiliary Results

We prove Theorem 1 by an argument analogous to that of Duffin and Schaeffer [1]. However, certain details become considerably harder and some new properties of T_{n} need to be proved. The first two lemmas are taken from [1].

Lemma 1 [1, Lemma 1]. If

$$
P(z)=c \prod_{v=1}^{n}\left(z-x_{v}\right)
$$

is a polynomial of degree n with n distinct real zeros and if p is a polynomial of degree at most n such that

$$
\left|p^{\prime}\left(x_{v}\right)\right| \leqslant\left|P^{\prime}\left(x_{v}\right)\right| \quad(v=1, \ldots, n)
$$

then for $k=1, \ldots, n$

$$
\left|p^{(k)}(x)\right| \leqslant\left|P^{(k)}(x)\right|
$$

at the roots of $P^{(k-1)}(x)=0$.
Lemma 2 [1, Theorem I]. Let P be a polynomial of degree n with n distinct real zeros to the left of the point 1 and suppose that

$$
|P(x+i y) \leqslant|P(1+i y)| \quad \text { for } \quad(x, y) \in[-1.1] \times \mathbb{R} .
$$

If p is a polynomial of degree at most n with real coefficients such that

$$
\left|p^{\prime}(x)\right| \leqslant\left|P^{\prime}(x)\right| \quad \text { whenever } \quad P(x)=0
$$

then for $k=1,2, \ldots, n$

$$
\left|p^{(k)}(x+i y)\right| \leqslant\left|P^{(k)}(1+i y)\right| \quad \text { for } \quad(x, y) \in[-1,1] \times \mathbb{R} .
$$

The next result is needed to prove a new property of T_{m} contained in Lemma 4.

Lemma 3. If p is a polynomial of degree m having all its zeros in $\operatorname{Im} z>0$, then for $\xi \geqslant 0$

$$
\left(m^{2}+2\right) p(z)+3(z-i \xi) p^{\prime}(z)
$$

has all its zeros in $\operatorname{Im} z>0$.
Proof. Let $z_{\mu}:=x_{\mu}+i y_{\mu}(\mu=1, \ldots, m)$ be the zeros of p. Further, let $z=x+i y, x \in \mathbb{R}, y \in \mathbb{R}$. Then for $y \leqslant 0$

$$
\operatorname{Im}\left\{\frac{p^{\prime}(z)}{p(z)}\right\}=\sum_{\mu=1}^{m} \operatorname{Im} \frac{1}{x-x_{\mu}+i\left(y-y_{\mu}\right)}=\sum_{\mu=1}^{m} \frac{-\left(y-y_{\mu}\right)}{\left|z-z_{\mu}\right|^{2}}>0
$$

if $\xi \geqslant 0$ and $z-i \xi \neq 0$ then for $y \leqslant 0$

$$
\operatorname{Im}\left\{-\frac{m^{2}+2}{3(z-i \underline{\xi})}\right\}=\frac{m^{2}+2}{3} \frac{y-\xi}{|z-i \zeta|^{2}} \leqslant 0
$$

Hence if $\xi \geqslant 0$, then $-\left(m^{2}+2\right) / 3(z-i \xi) \neq p^{\prime}(z) / p(z)$ for $\operatorname{Im} z \leqslant 0$ provided $z-i \xi \neq 0$, i.e., $\left(m^{2}+2\right) p(z)+3(z-i \xi) p^{\prime}(z) \neq 0$ for $\operatorname{Im} z \leqslant 0$ and all $\xi \geqslant 0$
except possibly when $z-i \xi=0$. But if $z-i \xi=0$ then $\left(m^{2}+2\right) p(z)+$ $3(z-i \xi) p^{\prime}(z)$ reduces to $\left(m^{2}+2\right) p(z)$, which is $\neq 0$ for $\operatorname{Im} z \leqslant 0$, by hypothesis.

Lemma 4. The polynomial $\tau_{m+2}(z):=\left(1-z^{2}\right) T_{m}(z)$ satisfies

$$
\left|\tau_{m+2}^{\prime \prime}(x+i y)\right| \leqslant\left|\tau_{m+2}^{\prime \prime}(1+i y)\right| \quad \text { for } \quad(x, y) \in[-1,1] \times \mathbb{R}
$$

Proof. First we note that

$$
\begin{aligned}
\tau_{m+2}^{\prime \prime}(z) & =\left(1-z^{2}\right) T_{m}^{\prime \prime}(z)-4 z T_{m}^{\prime}(z)-2 T_{m}(z) \\
& =z T_{m}^{\prime}(z)-m^{2} T_{m}(z)-4 z T_{m}^{\prime}(z)-2 T_{m}(z) \\
& =-3 z T_{m}^{\prime}(z)-\left(m^{2}+2\right) T_{m}(z)
\end{aligned}
$$

Now let $\xi \in[0,1]$. Then for $x \in[\xi, \infty)$,

$$
\left|T_{m}(x+i y)\right| \leqslant\left|T_{m}(1+x-\xi+i y)\right|
$$

Hence

$$
R_{\alpha}(z):=\alpha T_{m}(z)+T_{m}(1-\xi+z)
$$

does not vanish in the half-plane $\{z \in \mathbb{C}: \operatorname{Re} z \geqslant \xi\}$ whenever $|\alpha|<1$. Applying Lemma 3 to the polynomial $R_{x}(i z+\xi)$ we conclude that $\left(m^{2}+2\right) R_{\alpha}(i z+\xi)+3(i z+\xi) R_{\alpha}^{\prime}(i z+\xi)$ does not vanish for $\operatorname{Im} z \leqslant 0$, i.e.,

$$
\begin{aligned}
& \alpha\left\{\left(m^{2}+2\right) T_{m}(z)+3 z T_{m}^{\prime}(z)\right\} \\
& \quad+\left(m^{2}+2\right) T_{m}(1-\xi+z)+3 z T_{m}^{\prime}(1-\xi+z) \neq 0
\end{aligned}
$$

for $\operatorname{Re} z \geqslant \xi$ and $|\alpha|<1$. Setting $z=\xi+i y$ this implies

$$
\begin{align*}
\left|\tau_{m+2}^{\prime \prime}(\xi+i y)\right| & \equiv\left|\left(m^{2}+2\right) T_{m}(\xi+i y)+3(\xi+i y) T_{m}^{\prime}(\xi+i y)\right| \\
& \leqslant\left|\left(m^{2}+2\right) T_{m}(1+i y)+3(\xi+i y) T_{m}^{\prime}(1+i y)\right| \tag{13}
\end{align*}
$$

Obviously

$$
w:=\frac{3 T_{m}^{\prime}(1+i y)}{\left(m^{2}+2\right) T_{m}(1+i y)}
$$

is a point in the right half-plane. Therefore

$$
|1+(\xi+i y) w| \leqslant|1+(1+i y) w|
$$

and hence the right-hand side of (13) is majorized by

$$
\left|\left(m^{2}+2\right) T_{m}(1+i y)+3(1+i y) T_{m}^{\prime}(1+i y)\right| \equiv\left|\tau_{m+2}^{\prime \prime}(1+i y)\right|
$$

Since $\left|\tau_{m+2}^{\prime \prime}(-z)\right| \equiv\left|\tau_{m+2}^{\prime \prime}(z)\right| \equiv\left|\tau_{m+2}^{\prime \prime}(\bar{z})\right|$ the inequality

$$
\left|\tau_{m+2}^{\prime \prime}(\xi+i y)\right| \leqslant\left|\tau_{m+2}^{\prime \prime}(i+i y)\right|
$$

also holds for $\check{\varepsilon} \in[-1,0)$.
2.1. Lower Bounds for $\left|T_{m}(x)\right|$ at the Zeros of τ_{m+2}^{\prime}

Given $m \in \mathbb{N}$, let $\lambda_{\mu}=\lambda_{m . \mu}:=\cos \mu \pi / m(\mu=0,1, \ldots, m)$. The zeros of $\tau_{n_{2}+2}^{\prime}$ all lie in $(-1,1)$ and are symmetrically situated with respect to the origin. Denoting them in decreasing order by $\xi_{\mu}(\mu=0,1, \ldots, m)$ we easily see that $\zeta_{\mu} \in\left(\cos (2 \mu+1) \pi / 2 m, \lambda_{\mu}\right)$ for $\mu=0, \ldots,[(m-1) / 2]$ and that $\xi_{m .2}=0$ in case m is even. With each ξ_{μ} we associate the quantity

$$
\theta_{\mu}=\theta_{m, \mu}:=\sqrt{\frac{m^{2}\left(1-\zeta_{\mu}^{2}\right)}{m^{2}\left(1-\zeta_{\mu}^{2}\right)+4 \zeta_{\mu}^{2}}}
$$

Using

$$
\left(1-\zeta_{\mu}^{2}\right) T_{m}^{\prime}\left(\zeta_{\mu}\right)=2 \zeta_{\mu} T_{m}\left(\zeta_{\mu}\right)
$$

in conjunction with the identity

$$
\left(1-x^{2}\right)\left\{T_{m}^{\prime}(x)\right\}^{2}+m^{2}\left\{T_{m}(x)\right\}^{2} \equiv m^{2}
$$

we obtain that

$$
\left|T_{m}\left(\xi_{\mu}\right)\right|=\theta_{\mu} \quad(\mu=0,1, \ldots, m) .
$$

In the next lemma we obtain a lower bound for θ_{μ} which is not sharp but is adequate for our purpose.

Lemma 5. Let $m \geqslant 3$. For $\mu=1, \ldots, m-1$

$$
\begin{equation*}
\theta_{\mu}>.826674148 \tag{14}
\end{equation*}
$$

Proof. For each m, θ_{μ} is a decreasing function of $\left|\xi_{\mu}\right|$ and so it is enough to prove (14) for $\mu=1$. Simple calculation shows that $\theta_{1}=.957214044 \ldots$ if $m=3$ whereas $\theta_{1}=.924950591 \ldots$ if $m=4$. So let $m \geqslant s$. Clearly

$$
\begin{equation*}
\xi_{1}<\lambda_{1}=\cos \frac{\pi}{m}<1-\frac{\pi^{2}}{2 m^{2}}+\frac{\pi^{4}}{24 m^{4}} \leqslant 1-\frac{4.772448}{m^{2}} . \tag{15}
\end{equation*}
$$

Hence for $m \geqslant 5$ we have $m^{2}\left(1-\xi_{1}^{2}\right)>8.633845604$ which in turn implies that

$$
\theta_{1}>\sqrt{\frac{8.633845604}{12.633845604}}=.826674148
$$

Now we need to estimate $\lambda_{\mu}-\xi_{\mu}$ from below. This is done in
Lemma 6. For $\mu=1, \ldots,[(m-1) / 2]$ we have

$$
\begin{equation*}
\lambda_{\mu}-\xi_{\mu}>\left(3 \theta_{\mu}-1\right) \frac{\xi_{\mu}}{m^{2}}=\frac{2 \xi_{\mu}}{m^{2}}-3\left(1-\theta_{\mu}\right) \frac{\xi_{\mu}}{m^{2}} \tag{16}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
-2 \lambda_{\mu} T_{m}\left(\lambda_{\mu}\right) & =\left[\left(1-x^{2}\right) T_{m}^{\prime}(x)-2 x T_{m}(x)\right]_{\tilde{\xi}_{\mu}}^{\lambda_{\mu}} \\
& =\int_{\xi_{\mu}}^{\lambda_{\mu}}\left\{\left(1-x^{2}\right) T_{m}^{\prime \prime}(x)-4 x T_{m}^{\prime}(x)-2 T_{m}(x)\right\} d x \\
& =\int_{\xi_{\mu}}^{\lambda_{\mu}}\left\{-3 x T_{m}^{\prime}(x)-\left(m^{2}+2\right) T_{m}(x)\right\} d x \\
& =\left[-3 x T_{m}(x)\right]_{\xi_{\mu}}^{i_{\mu}}-\left(m^{2}-1\right) \int_{\xi_{\mu}}^{\lambda_{\mu}} T_{m}(x) d x \\
& =-3 \lambda_{\mu} T_{m}\left(\lambda_{\mu}\right)+3 \xi_{\mu} T_{m}\left(\xi_{\mu}\right)-\left(m^{2}-1\right) \int_{\xi_{\mu}}^{\lambda_{\mu}} T_{m}(x) d x
\end{aligned}
$$

and so

$$
\begin{aligned}
& 3 \xi_{\mu} T_{m}\left(\xi_{\mu}\right)-\xi_{\mu} \operatorname{sgn}\left(T_{m}\left(\lambda_{\mu}\right)\right) \\
& \quad=\lambda_{\mu} T_{m}\left(\lambda_{\mu}\right)-\xi_{\mu} \operatorname{sgn}\left(T_{m}\left(\lambda_{\mu}\right)\right)+\left(m^{2}-1\right) \int_{\xi_{\mu}}^{\lambda_{\mu}} T_{m}(x) d x
\end{aligned}
$$

Since $\left|\int_{\xi_{\mu}}^{\lambda_{\mu}} T_{m}(x) d x\right| \leqslant \lambda_{\mu}-\xi_{\mu}$ and $\theta_{\mu}>\frac{1}{3}$ it follows that

$$
\left(3 \theta_{\mu}-1\right) \xi_{\mu}<\lambda_{\mu}-\xi_{\mu}+\left(m^{2}-1\right)\left(\lambda_{\mu}-\xi_{\mu}\right)
$$

which is what we wanted to prove.
At this stage it is important to obtain a good upper bound for ξ_{μ}^{2}.
Lemma 7. Let $m \geqslant 2$. For $\mu=1, \ldots, m-1$

$$
\begin{equation*}
\xi_{\mu}^{2}<1-\frac{10}{m^{2}+10} \tag{17}
\end{equation*}
$$

and so

$$
\begin{equation*}
\delta_{\mu}:=\frac{4 \xi_{\mu}^{2}}{m^{2}\left(1-\xi_{\mu}^{2}\right)} \leqslant \frac{2}{5} \tag{18}
\end{equation*}
$$

Proof. We need to prove (17) only for $\mu=1$. If $m=2$, then $\xi_{1}=0$ and so (17) holds. It is a matter of simple calculation that $\xi_{1}^{2}=.170563828<$ $9 / 19=1-10 /\left(m^{2}+10\right)$ if $m=3$ whereas $\zeta_{1}^{2}=.403143528<8 / 13=$ $1-10 /\left(m^{2}+10\right)$ if $m=4$. Now let $m \geqslant 5$. From (15) and (16) it follows that

$$
\varsigma_{1}<1-\frac{4.772448}{m^{2}}-\frac{1}{m^{2}}\left(30_{1}-1\right) \xi_{1} .
$$

Since $\theta_{1} \geqslant .826674148$ we get

$$
\begin{aligned}
\xi_{1} & <\frac{1-4.772448 / m^{2}}{1+1.480022444 / m^{2}}<1-\frac{6.252470444}{m^{2}}+\frac{9.253796588}{m^{4}} \\
& \leqslant 1-\frac{5.882318581}{m^{2}}
\end{aligned}
$$

Hence

$$
\xi_{1}^{2} \leqslant 1-\frac{10.38057029}{m^{2}}<1-\frac{10}{m^{2}+10}
$$

This proves (17). As regards (18), it is a direct consequence of (17).
We use (18) to obtain a crucial lower bound for θ_{μ} depending on δ_{μ}.
Lemma 8. For $\mu=1, \ldots,[(m-1) / 2]$

$$
\theta_{\mu} \geqslant 1-\frac{1}{2} \delta_{\mu}+\frac{1}{4} \delta_{\mu}^{2}
$$

Proof. According to Taylor's theorem

$$
\begin{aligned}
\theta_{\mu}= & \frac{1}{\sqrt{1+\delta_{\mu}}}=: \theta\left(\delta_{\mu}\right)=\theta(0)+\delta_{\mu} \theta^{\prime}(0)+\frac{1}{2!} \delta_{\mu}^{2} \theta^{\prime \prime}(0)+\frac{1}{3!} \delta_{\mu}^{3} \theta^{\prime \prime \prime}(0) \\
& +\frac{1}{4!} \delta_{\mu}^{4} \theta^{(i x)}\left(\delta^{\prime}\right) \quad \text { where } \quad 0 \leqslant \delta^{\prime} \leqslant \delta_{\mu} \\
= & 1-\frac{1}{2} \delta_{\mu}+\frac{3}{8} \delta_{\mu}^{2}-\frac{5}{16} \delta_{\mu}^{3}+\frac{35}{128} \delta_{\mu}^{4}\left(1+\delta^{\prime}\right)^{-9: 2} \\
> & 1-\frac{1}{2} \delta_{\mu}+\frac{3}{8} \delta_{\mu}^{2}-\frac{5}{16} \delta_{\mu}^{3} \\
\geqslant & 1-\frac{1}{2} \delta_{\mu}+\frac{3}{8} \delta_{\mu}^{2}-\frac{1}{8} \delta_{\mu}^{2} \quad \text { by }(18) \\
= & 1-\frac{1}{2} \delta_{\mu}+\frac{1}{4} \delta_{\mu}^{2}
\end{aligned}
$$

2.2. The Sign of $\left(\left(1-x^{2}\right)^{2} T_{m}^{\prime}(x) /\left(x-\lambda_{\mu}\right)\right)^{\prime \prime}$ at a zero of τ_{m+2}^{\prime}

Lemma 9. Let ξ be a zero of τ_{m+2}^{\prime}. Then for $\mu=0,1, \ldots, m$

$$
\left.\frac{1-\xi^{2}}{T_{m}(\xi)} \frac{d^{2}}{d x^{2}}\left\{\frac{\left(1-x^{2}\right)^{2} T_{m}^{\prime}(x)}{x-\lambda_{\mu}}\right\}\right|_{x=\xi}=\frac{\phi\left(\xi, \lambda_{\mu}\right)}{\left(\xi-\lambda_{\mu}\right)^{4}}
$$

where

$$
\begin{aligned}
\phi(\xi, t):= & (\xi-t)\left\{3 \xi\left(\left(m^{2}-4\right)\left(1-\xi^{2}\right)+2\right)(t-\xi)^{2}\right. \\
& \left.-2\left(1-\xi^{2}\right)\left(m^{2}\left(1-\xi^{2}\right)+6 \xi^{2}\right)(t-\xi)+4 \xi\left(1-\xi^{2}\right)^{2}\right\} .
\end{aligned}
$$

Proof. It is a matter of simple calculation that

$$
\begin{aligned}
& \frac{d}{d x}\left\{\frac{\left(1-x^{2}\right)^{2} T_{m}^{\prime}(x)}{x-\lambda_{\mu}}\right\} \\
& =\frac{\left\{\left(1-x^{2}\right)^{2} T_{m}^{\prime \prime}(x)-4 x\left(1-x^{2}\right) T_{m}^{\prime}(x)\right\}\left(x-\lambda_{\mu}\right)-\left(1-x^{2}\right)^{2} T_{m}^{\prime}(x)}{\left(x-\lambda_{\mu}\right)^{2}} \\
& =-\frac{\left(1-3 \lambda_{\mu} x+x^{2}+3 \lambda_{\mu} x^{3}-2 x^{4}\right) T_{m}^{\prime}(x)+m^{2}\left(-\lambda_{\mu}+x+\lambda_{\mu} x^{2}-x^{3}\right) T_{m}(x)}{\left(x-\lambda_{\mu}\right)^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(1-x^{2}\right) \frac{d^{2}}{d x^{2}}\left\{\frac{\left(1-x^{2}\right)^{2} T_{m}^{\prime}(x)}{x-\lambda_{\mu}}\right\} \\
& \quad=-\frac{A(x)\left(1-x^{2}\right) T_{m}^{\prime}(x)-B(x)\left(1-x^{2}\right) T_{m}(x)}{\left(x-\lambda_{\mu}\right)^{4}}
\end{aligned}
$$

where

$$
\begin{aligned}
A(x):= & \left(x-\lambda_{\mu}\right)^{3}\left(m^{2}+3-\left(m^{2}+6\right) x^{2}\right) \\
& -2\left(x-\lambda_{\mu}\right)\left(1-3 \lambda_{\mu} x+2 x^{2}\right)\left(1-x^{2}\right), \\
B(x):= & \left(x-\lambda_{\mu}\right)^{3} 5 m^{2} x+\left(x-\lambda_{\mu}\right)^{2} 2 m^{2}\left(1-x^{2}\right) .
\end{aligned}
$$

At a zero ξ of τ_{m+2}^{\prime} we have $\left(1-\xi^{2}\right) T_{m}^{\prime}(\xi)=2 \xi T_{m}(\xi)$ and so setting

$$
\begin{aligned}
& A_{1}(\xi):=3 \xi\left\{\left(m^{2}-4\right)\left(1-\xi^{2}\right)+2\right\} \\
& A_{2}(\xi):=2\left(1-\xi^{2}\right)\left\{m^{2}\left(1-\xi^{2}\right)\left\{m^{2}\left(1-\xi^{2}\right)+6 \xi^{2}\right\},\right. \\
& A_{3}(\xi):=4 \xi\left(1-\xi^{2}\right)^{2}
\end{aligned}
$$

we get

$$
\begin{aligned}
(1- & \left.\xi^{2}\right)\left.\frac{d^{2}}{d x^{2}}\left\{\frac{\left(1-x^{2}\right)^{2} T_{m}^{\prime}(x)}{x-\lambda_{\mu}}\right\}\right|_{x=\xi} \\
& =\frac{A_{1}(\xi)\left(\xi-\lambda_{\mu}\right)^{3}+A_{2}(\xi)\left(\xi-\lambda_{\mu}\right)^{2}+A_{3}(\xi)\left(\xi-\lambda_{\mu}\right)}{\left(\zeta-\lambda_{\mu}\right)^{4}} T_{m}(\xi) \\
& =\frac{\phi\left(\xi, \lambda_{\mu}\right)}{\left(\xi-\hat{\lambda}_{\mu}\right)^{4}} T_{m}(\xi)
\end{aligned}
$$

Remark 1. It is important to note that for $\xi=0$, which is one of the zeros of τ_{m+2}^{\prime} when m is even,

$$
\phi\left(\xi, \lambda_{\mu}\right)=\phi\left(0, \lambda_{\mu}\right)=2 m^{2} \lambda_{\mu}^{2} \geqslant 0 \quad \text { for } \quad \mu=0,1, \ldots, m .
$$

We claim that $\phi\left(\xi_{\mu}, \lambda_{\nu}\right) \geqslant 0$ for $\mu=0,1, \ldots, m$ and $y=0,1, \ldots, m$. This crucial fact is established in the next four lemmas. The proof which makes use of Lemmas $5-8$ is long and tedious. The difficulty lies in the fact that $\phi\left(\xi_{\mu}, t\right)$ changes sign in $(-1,1)$ except when m is even and $\mu=m / 2$.

Lemma 10. The function $\phi(\xi, t)$ has a zero in $(1, \infty)$ if $0<\xi<1$.
Proof. Since $\phi(\xi, t) \rightarrow-\infty$ as $t \rightarrow+\infty$ it suffices to verify that

$$
\begin{equation*}
\phi(\breve{\zeta}, 1)>0 . \tag{19}
\end{equation*}
$$

As is easily seen,

$$
\phi(\xi, 1)=(1-\xi)^{3} g(\xi)
$$

where

$$
g(\xi):=\left(m^{2}-4\right) \xi^{3}-2\left(m^{2}-2\right) \xi^{2}-\left(m^{2}-2\right) \xi+2 m^{2}
$$

and so it is enough to check that $g(\xi)>0$ for $0<\xi<1$. Indeed, if $m=1$ then $g(\xi)=-3 \xi^{3}+2 \xi^{2}+\xi+2>2$, whereas if $m=2$, then $g(\zeta)=-4 \xi^{2}-$ $2 \xi+8>2$. In case $m \geqslant 3$ we get the desired conclusion by noting that $g(-2)=-12 m^{2}+44<0, \quad g(-1)=6>0, \quad g(1)=2>0, \quad g(2)=-12<0$, $g(t) \rightarrow+\infty$ as $t \rightarrow+\infty$.

Lemma 11. For $\mu=1, \ldots,[(m-1) / 2]$

$$
\phi\left(\zeta_{\mu}, \xi_{\mu}+\left(3 \theta_{\mu}-1\right) \frac{\zeta_{\mu}}{m^{2}}\right) \geqslant 0
$$

Proof. We have to verify that if

$$
L(\xi, t):=\frac{\phi(\xi, t)}{t-\xi}
$$

then

$$
L\left(\xi_{\mu}, \xi_{\mu}+\left(3 \theta_{\mu}-1\right) \frac{\xi_{\mu}}{m^{2}}\right) \geqslant 0
$$

We have

$$
\begin{aligned}
L= & L\left(\xi_{\mu}, \xi_{\mu}+\left(3 \theta_{\mu}-1\right) \frac{\xi_{\mu}}{m^{2}}\right) \\
= & -\frac{3 \xi_{\mu}^{3}}{m^{4}}\left\{m^{2}\left(1-\zeta_{\mu}^{2}\right)-4\left(1-\xi_{\mu}^{2}\right)+2\right\}\left\{4-12\left(1-\theta_{\mu}\right)+9\left(1-\theta_{\mu}\right)^{2}\right\} \\
& -\frac{6}{m^{2}}\left(1-\theta_{\mu}\right) \xi_{\mu}\left(1-\xi_{\mu}^{2}\right)\left\{m^{2}\left(1-\xi_{\mu}^{2}\right)+6 \xi_{\mu}^{2}\right\}+\frac{24}{m^{2}} \xi_{\mu}^{3}\left(1-\xi_{\mu}^{2}\right) \\
= & \frac{12}{m^{2}} \xi_{\mu}^{3}\left(1-\xi_{\mu}^{2}\right)-\frac{12}{m^{4}} \xi_{\mu}^{3}\left\{-4\left(1-\xi_{\mu}^{2}\right)+2\right\} \\
& +\frac{36}{m^{4}}\left(1-\theta_{\mu}\right) \xi_{\mu}^{3}\left\{m^{2}\left(1-\zeta_{\mu}^{2}\right)-4\left(1-\xi_{\mu}^{2}\right)+2\right\} \\
& -\frac{27}{m^{4}}\left(1-\theta_{\mu}\right)^{2} \xi_{\mu}^{3}\left\{m^{2}\left(1-\xi_{\mu}^{2}\right)-4\left(1-\xi_{\mu}^{2}\right)+2\right\} \\
& -\frac{6}{m^{2}}\left(1-\theta_{\mu}\right) \xi_{\mu}\left(1-\xi_{\mu}^{2}\right)\left\{m^{2}\left(1-\xi_{\mu}^{2}\right)+6 \xi_{\mu}^{2}\right\} .
\end{aligned}
$$

By Lemma 8

$$
1-\theta_{\mu} \leqslant \frac{2 \xi_{\mu}^{2}}{m^{2}\left(1-\xi_{\mu}^{2}\right)}-\frac{1}{4} \frac{16 \xi_{\mu}^{4}}{m^{4}\left(1-\xi_{\mu}^{2}\right)^{2}}=\frac{2 \xi_{\mu}^{2}}{m^{2}\left(1-\xi_{\mu}^{2}\right)}-\frac{4 \xi_{\mu}^{4}}{m^{4}\left(1-\xi_{\mu}^{2}\right)^{2}}
$$

Hence

$$
\begin{aligned}
L \geqslant & \frac{12}{m^{2}} \xi_{\mu}^{3}\left(1-\xi_{\mu}^{2}\right)+\frac{48}{m^{4}} \xi_{\mu}^{3}\left(1-\xi_{\mu}^{2}\right)-\frac{24}{m^{4}} \xi_{\mu}^{3} \\
& -\frac{144}{m^{4}}\left(1-\theta_{\mu}\right) \xi_{\mu}^{3}\left(1-\xi_{\mu}^{2}\right)+\frac{72}{m^{4}}\left(1-\theta_{\mu}\right) \xi_{\mu}^{3} \\
& -\frac{27}{m^{4}}\left(1-\theta_{\mu}\right)^{2} \xi_{\mu}^{3}\left\{m^{2}\left(1-\xi_{\mu}^{2}\right)-4\left(1-\xi_{\mu}^{2}\right)+2\right\} \\
& -\left\{\frac{2 \xi_{\mu}^{2}}{m^{2}\left(1-\xi_{\mu}^{2}\right)}-\frac{4 \zeta_{\mu}^{4}}{m^{4}\left(1-\xi_{\mu}^{2}\right)^{2}}\right\} 6 \xi_{\mu}\left(1-\xi_{\mu}^{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{24}{m^{4}} \xi_{\mu}^{3}\left(1-\xi_{\mu}^{2}\right)-\frac{9}{m^{4}}\left(1-\theta_{\mu}\right) \\
& \times \zeta_{\mu}^{3}\left\{16\left(1-\xi_{\mu}^{2}\right)-8+3\left(1-\theta_{\mu}\right)\left(m^{2}\left(1-\xi_{\mu}^{2}\right)-4\left(1-\xi_{\mu}^{2}\right)+2\right)\right\} \\
\geqslant & \frac{24}{m^{4}} \xi_{\mu}^{3}\left(1-\xi_{\mu}^{2}\right)-\frac{9}{m^{4}}\left(1-\theta_{\mu}\right) \\
& \times \xi_{\mu}^{3}\left\{16\left(1-\xi_{\mu}^{2}\right)-8+\frac{6 \xi_{\mu}^{2}}{m^{2}\left(1-\xi_{\mu}^{2}\right)}\left(m^{2}\left(1-\xi_{\mu}^{2}\right)-4\left(1-\xi_{\mu}^{2}\right)+2\right)\right\}
\end{aligned}
$$

by Lemma 8

$$
\begin{aligned}
& =\frac{24}{m^{4}} \xi_{\mu}^{3}\left(1-\zeta_{\mu}^{2}\right)-\frac{9}{m^{4}}\left(1-\theta_{\mu}\right) \xi_{\mu}^{3}\left(8-10 \zeta_{\mu}^{2}-\frac{24}{m^{2}} \xi_{\mu}^{2}+3 \delta_{\mu}\right) \\
& \geqslant \frac{24}{m^{4}} \zeta_{\mu}^{3}\left(1-\xi_{\mu}^{2}\right)-\frac{9}{m^{4}}\left(1-\theta_{\mu}\right) \zeta_{\mu}^{3}\left(8-10 \zeta_{\mu}^{2}+\frac{\sigma}{5}\right) \quad \text { by }(18) \\
& \geqslant \frac{24}{m^{4}} \xi_{\mu}^{3}\left(1-\xi_{\mu}^{2}\right)-\frac{90}{m^{4}}\left(1-\theta_{\mu}\right) \xi_{\mu}^{3}\left(1-\zeta_{\mu}^{2}\right) \\
& =\frac{90}{m^{4}}\left(\theta_{\mu}-\frac{11}{15}\right) \xi_{\mu}^{3}\left(1-\zeta_{\mu}^{2}\right) \\
& \geqslant 0
\end{aligned}
$$

by Lemma 5 .
Lemma 12. For $\mu=0,1, \ldots,[(m-1) / 2]$ and $v=0,1, \ldots, m$

$$
\begin{equation*}
\phi\left(\zeta_{\mu}, \lambda_{v}\right) \geqslant 0 \tag{20}
\end{equation*}
$$

Proof. From Lemma 10 we know that $\phi\left(\xi_{\mu} . t\right)$ has a zero in ($\left.1, \infty\right)$. Besides, $\phi\left(\xi_{\mu}, t\right)$ has a zero at ξ_{μ} with

$$
\left.\frac{d}{d t} \phi\left(\xi_{\mu}, t\right)\right|_{t=\xi_{\mu}}=-4 \xi_{\mu}\left(1-\xi_{\mu}^{2}\right)<0
$$

Hence if $\mu=1, \ldots,[(m-1) / 2]$ then, in view of Lemma $11, \phi\left(\xi_{\mu}, t\right)$ must have a zero in $\left(\xi_{\mu}, \xi_{\mu}+\left(3 \theta_{\mu}-1\right) \xi_{\mu} / m^{2}\right)$ as well. Being a polynomial of degree 3 in t the function $\phi\left(\xi_{\mu}, t\right)$ has no other zeros and indeed shouid be positive on $\left[-1, \xi_{\mu}\right) \cup\left(\xi_{\mu}+\left(3 \theta_{\mu}-1\right) \xi_{\mu} / m^{2}, 1\right]$. It follows from Lemma 6 that the interval $\left[\lambda_{\mu}, 1\right]$ is contained in $\left[\xi_{\mu}+\left(3 \theta_{\mu}-1\right) \xi_{\mu i} m^{2}, 1\right]$ and so $\phi\left(\xi_{\mu}, t\right) \geqslant 0$ for $t \in\left[-1, \xi_{\mu}\right] \cup\left[i_{\mu}, 1\right]$. This proves (20) for
$\mu=1, \ldots,[(m-1) / 2]$. We can argue the same way in the case $\mu=0 ;$ although Lemma 11 is not available, (19) serves the purpose.

More generally, we have
Lemma 12'. (20) holds for $\mu=0,1, \ldots, m$ and $v=0,1, \ldots, m$.
Proof. That (20) holds for $\mu=m / 2$ when m is even was pointed out in Remark 1. It also holds for $\mu=[(m+1) / 2], \ldots, m$ since

$$
\phi(\xi, t) \equiv \phi(-\xi,-t)
$$

and

$$
\xi_{\mu}=-\xi_{m-\mu} \quad(\mu=0,1, \ldots, m), \quad \lambda_{v}=-\lambda_{m-v} \quad(v=0,1, \ldots, m)
$$

Now we are ready to prove

Lemma 13. Let $p(x):=\left(1-x^{2}\right) q(x)$ be a polynomial of degree at most n such that $|q(x)| \leqslant 1$ at $\lambda_{v}=\cos (v \pi /(n-2))(v=0,1, \ldots, n-2)$. Then at the roots of $\tau_{n}^{\prime}(x)=0$

$$
\left|p^{\prime \prime}(x)\right| \leqslant\left|\tau_{n}^{\prime \prime}(x)\right|
$$

The equality can occur only if $p(x) \equiv \gamma \tau_{n}(x)$ for some constant $\gamma,|\gamma|=1$.
Proof. Let $\psi(x):=\left(1-x^{2}\right) T_{m}^{\prime}(x)$, where $m:=n-2$. Then

$$
q(x)=\sum_{v=0}^{m} \frac{q\left(\lambda_{v}\right)}{\psi^{\prime}\left(\lambda_{v}\right)} \frac{\psi(x)}{x-\lambda_{v}}
$$

and so

$$
p(x)=\sum_{v=0}^{m} \frac{q\left(\lambda_{v}\right)}{\psi^{\prime}\left(\lambda_{v}\right)} \frac{\left(1-x^{2}\right)^{2} T_{m}^{\prime}(x)}{x-\lambda_{v}}
$$

Using Lemma 9 we deduce that if ξ is a root of $\tau_{n}^{\prime}(x)=0$, then

$$
\begin{equation*}
p^{\prime \prime}(\xi)=\frac{T_{m}(\xi)}{1-\xi^{2}} \sum_{v=0}^{m} \frac{q\left(\lambda_{v}\right)}{\psi^{\prime}\left(\lambda_{v}\right)} \frac{\phi\left(\xi, \lambda_{v}\right)}{\left(\xi-\lambda_{v}\right)^{4}} . \tag{21}
\end{equation*}
$$

In particular

$$
\tau_{n}^{\prime \prime}(\xi)=\frac{T_{m}(\xi)}{1-\xi^{2}} \sum_{v=0}^{m} \frac{T_{m}\left(\lambda_{v}\right)}{-\lambda_{v} T_{m}^{\prime}\left(\lambda_{v}\right)-m^{2} T_{m}\left(\lambda_{v}\right)} \frac{\phi\left(\xi, \lambda_{v}\right)}{\left(\xi-\lambda_{v}\right)^{4}}
$$

and since $T_{m}\left(\lambda_{v}\right)$ and $\psi^{\prime}\left(\lambda_{v}\right)=-\lambda_{v} T_{m}^{\prime}\left(\lambda_{v}\right)-m^{2} T_{m}\left(\lambda_{v}\right)$ are of opposite sign this gives

$$
\begin{equation*}
\tau_{n}^{\prime \prime}(\xi)=-\frac{T_{m}(\xi)}{1-\xi^{2}} \sum_{v=0}^{m}\left|\frac{1}{\psi^{\prime}\left(\hat{\lambda}_{v}\right)}\right| \frac{\phi\left(\xi, \lambda_{v}\right)}{\left(\xi-\lambda_{v}\right)^{4}} \tag{22}
\end{equation*}
$$

Now $\left(q\left(\lambda_{v}\right) \mid \leqslant 1\right.$ by hypothesis and $\phi\left(\xi, \lambda_{v}\right) \geqslant 0$ according to Lemma $1^{\prime} 2^{\prime} ;$ so comparing (21) and (22) we obtain

$$
\left|p^{\prime \prime}(\xi)\right| \leqslant\left|\tau_{n}^{\prime \prime}(\xi)\right|
$$

where equality holds if and only if $q\left(\lambda_{v}\right)=\gamma T_{m}\left(\dot{\lambda}_{\nu}\right)(;=0,1, \ldots, m)$, i.e., $p(x) \equiv \gamma \tau_{n}(x)$ for some constant $\gamma,|\gamma|=1$.

3. Proof of Theorem 1

Let $p(x):=\left(1-x^{2}\right) q(x)$ be a polynomial of degree at most n such that $\mid q\left(\lambda_{v}\right) \leqslant 1$ for $v=0,1, \ldots, n-2$. Further, let $p(x)$ be real for real x. If $p(x) \not \equiv \pm \tau_{n}(x)$ then by Lemma 13 there exists a constant $c>1$ such that $\left|c p^{\prime \prime}(x)\right| \leqslant\left|\tau_{n}^{\prime \prime}(x)\right|$ at the zeros of τ_{n}^{\prime}. Since the zeros of τ_{n}^{\prime} are all real and distinct it follows from Lemma 1 that $\left|c p^{\prime \prime \prime}(x)\right| \leqslant\left|\tau_{n}^{\prime \prime \prime}(x)\right|$ at the zeros of $\tau_{m}^{\prime \prime}$. Now Lemma 2 applied in conjunction with Lemma 4 gives

$$
\left|p^{(k)}\left(x+i y^{\prime}\right)\right| \leqslant \frac{1}{c}\left|\tau_{n}^{(k)}(1+i y)\right|
$$

$$
\text { for }(x, y) \in[-1,1] \times \mathbb{R} \quad \text { and } k=3,4, \ldots
$$

Hence (12') holds. In particular

$$
\begin{equation*}
\left\|p^{(k)}\right\| \leqslant\left|\tau_{n}^{(k)}(1)\right| \quad \text { for } \quad k=3,4, \ldots \tag{23}
\end{equation*}
$$

In this latter inequality, the condition that $p(x)$ is real for real x can be dropped. To see this, let $p(x):=\left(1-x^{2}\right) q(x)$ be a polynomial of degree at most n such that $\left|q\left(\lambda_{v}\right)\right| \leqslant 1$ for $v=0,1, \ldots, n-2$. Let $\left\|p^{(k)}\right\|$ be attained at $x_{*} \in[-1,1]$ where $p^{(k)}\left(x_{*}\right)=\left\|p^{(k)}\right\| e^{i x}$. Consider $p_{*}(x):=\operatorname{Re}\left\{e^{-i x} p(x)\right\}=$ $\left(1-x^{2}\right) q_{*}(x)$ which is a polynomial of degree at most n such that $\left|q_{*}\left(\lambda_{v}\right)\right| \leqslant\left|q\left(\lambda_{v}\right)\right| \leqslant 1$ for $v=0,1, \ldots, n-2$. Further, $p_{*}(x)$ is real for real x and so by (23)

$$
\left\|p_{*}^{(k)}\right\| \leqslant \tau_{n}^{(k)}(1) \| \quad \text { for } \quad k=3,4, \ldots
$$

But

$$
\left\|p^{(k)}\right\|=e^{-i x} p^{(k)}\left(x_{*}\right)=p_{*}^{(k)}\left(x_{*}\right) \leqslant\left\|p_{*}^{(k)}\right\|
$$

and therefore (12) holds.

4. An Addendum to Theorem 1

Let

$$
-1=: y_{0}<y_{1}<\cdots<y_{m}:=1
$$

and set

$$
\omega(x):=(1+x)^{n_{1}}(1-x)^{n_{2}} \prod_{\mu=0}^{m}\left(x-y_{\mu}\right)
$$

where n_{1}, n_{2} are non-negative integers. Further, let

$$
\omega_{\mu}(x):=\frac{\omega(x)}{x-y_{\mu}}, \quad \mu=0,1, \ldots, m
$$

and denote by

$$
\alpha_{\mu, 1} \leqslant \alpha_{\mu, 2} \leqslant \cdots \leqslant \alpha_{\mu, n-k}, \quad \mu=0,1, \ldots, m
$$

the zeros of $\omega_{\mu}^{(k)}$. Now suppose that P_{n} is a polynomial of degree $n:=m+n_{1}+n_{2}$ having the following properties:
(i) it has zeros of multiplicities n_{1} and n_{2} at -1 and 1 , respectively,
(ii) the polynomial $\hat{P}_{n}(x):=P_{n}(x) /(1+x)^{n_{1}}(1-x)^{n_{2}}$ has alternating signs at the points $y_{0}, y_{1}, \ldots, y_{m}$.
It was proved in [4, Theorem 1] that if $p(x):=(1+x)^{n_{1}}(1-x)^{n_{2}} \hat{p}(x)$ is a polynomial of degree at most n such that

$$
\begin{equation*}
\left|\hat{p}\left(y_{\mu}\right)\right| \leqslant\left|\hat{P}_{n}\left(y_{\mu}\right)\right|, \quad \mu=0,1, \ldots, m \tag{24}
\end{equation*}
$$

and $p(x)$ is real for real x then for z lying outside the open disk with $\left(\alpha_{m, 1}, \alpha_{0, n-k}\right)$ as diameter, we have

$$
\left|p^{(k)}(z)\right| \leqslant\left|P_{n}^{(k)}(z)\right| .
$$

The statement of Theorem 1 in [4] contains a slight inaccuracy, namely, the hats over p and P_{n} in (24) were inadvertently omitted.

Applying the above result with $P_{n}(x):=\left(1-x^{2}\right) T_{n-2}(x)$ and

$$
y_{\mu}:=-\cos \frac{\mu \pi}{n-2}, \quad \mu=0,1, \ldots, n-2
$$

we obtain
Theorem 2. Let $p(x):=\left(1-x^{2}\right) q(x)$ be a polynomial of degree at most n such that (11) holds. If $p(x)$ is real for real x then for $k=0,1,2, \ldots$

$$
\begin{equation*}
\left|p^{(k)}(z)\right| \leqslant\left|\tau_{n}^{(k)}(z)\right| \tag{25}
\end{equation*}
$$

for $|z| \geqslant \alpha_{\kappa}$, where α_{κ} is the largest zero of

$$
\frac{d^{k}}{d x^{k}}\left\{\frac{\left(1-x^{2}\right) T_{n-2}^{\prime}(x)}{(1+x)}\right\}
$$

According to a result in [3], inequality (25) does not hold at points immediately to the right of $-\alpha_{k}$ and at those immediately to the left of α_{k}. So in Theorem $2 \alpha_{\kappa}$ cannot be replaced by any smaller number.

5. Some Remarks on Theorem i

5.1. In Theorem 1 we have proved, in particular, that for $k=3,4, \ldots$ the conclusion of (3.1) remains true under the weaker hypothesis that $p(x) /\left(1-x^{2}\right)$ is bounded by 1 only at the points $x_{v}=\cos (v \pi /(n-2)$: $v=0,1, \ldots, n-2$. This raises the question if there are $n-1$ other points in the interval $[-1,1]$ with the same property. The answer is in the negative. Indeed if E is any closed set of points in $[-1,1]$ which does not include all the points $x_{v}=\cos (v \pi /(n-2))$ then there exists (see [1, p. 526]; also see [8, Remark 3 on p. 138]) a polynomial q of degree $n-2$ which is bounded by 1 in E whereas $q^{(k)}(1)>T_{n-2}^{(k)}(1)$ for $k=1,2, \ldots, n-2$. So $p(x):=\left(1-x^{2}\right) q(x)$ serves as a counter example.

$$
\begin{aligned}
\left|p^{(k)}(1)\right| & =2 k q^{(k-1)}(1)+k(k-1) q^{(k-2)}(1) \\
& >2 k T_{n-2}^{(k-1)}(1)+k(k-1) T_{n-2}^{(k-2)}(1)=\left|\tau_{n}^{(k)}(1)\right| .
\end{aligned}
$$

5.2. It is natural to wonder if (12') or at least (12) holds also for $k=2$. Further, one may ask if (3.2), (3.3) and (3.4) hold if only (11) is satisfied. The example $p(x):=\left(1-x^{2}\right) q(x)$, where $q(x):=-x^{2}+x+1$, shows that (3.2) does not hold under the weaker assumption. Indeed $\left|q\left(\cos \left(v \pi_{i} 2\right)\right)\right|=1$ for $v=0,1,2$ whereas $\left\|p^{\prime}\right\|=(9+19 \sqrt{57}) / 72>2=$ $\left|\tau_{4}^{\prime}(1)\right|$. The other parts of the question will be discussed elsewhere.
5.3. Theorem 1 may also be stated as follows.

Theorem 1'. If p is a polynomial of degree at most n satisfying (4) then

$$
\left\|\frac{d^{k}}{d x^{k}}\left(\left(1-x^{2}\right) p(x)\right)\right\| \leqslant\left|\tau_{n+2}^{(k)}(1)\right| \quad \text { for } \quad k=3,4, \ldots
$$

Further, if $p(x)$ is real for real x, and $I_{y}:=\{x+i y:-1 \leqslant x \leqslant 1\}$ then

$$
\max _{z \in \Lambda_{1}}\left|\frac{d^{k}}{d z^{k}}\left(\left(1-z^{2}\right) p(z)\right)\right| \leqslant\left|\tau_{n+2}^{(k)}(1+i y)\right| \quad \text { for } \quad y \in \mathbb{R} \quad \text { and } k=3,4 \ldots .
$$

References

1. R. J. Duffin and A. C. Schaeffer, A refinement of an inequality of the brothers Markoff, Trans. Amer. Math. Soc. 50 (1941), 517-528.
2. W. A. Markoff, Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen, Math. Ann. 77 (1916), 218-258.
3. R. Pierre and Q. I. Rahman, On a problem of Turán about polynomials. (II), Canad. J. Math. 33 (1981), 701-733.
4. R. Pierre and Q. I. Rahman, On a problem of Turán about polynomials, III, Canad. J. Math. 34 (1982), 888-899.
5. R. Pierre. Q. I. Rahman, and G. Schmeisser, On polynomials with curved majorants, J. Approx. Theory 57 (1989), 211-222.
6. Q. I. Rahman, On a problem of Turán about polynomials with curved majorants, Trans. Amer. Math. Soc. 163 (1972), 447-455.
7. Q.I. Rahman and G. Schmeisser, Markov-Duffin-Schaeffer inequality for polynomials with a circular majorant, Trans. Amer. Math. Soc. 310 (1988), 693-702.
8. T. J. Rivlin, "Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory," 2nd ed., Wiley, New York, 1990.
