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For yEIR let Iy:={x+iy: -1:;:;x:;:;1}. It was proved by R.J.Duffin and
A. C. Schaeffer that if pix) := L~~o a,x" is a polynomial of degree at most n with
real coefficients such that Ip(cos(I'7l:(n»)!:;:; I for 1'=0,1, ..., n and Tn is the nth
Chebyshev polynomial of the first kind then maxZE/,.lplkl(z)l:;:; IT~kJ(1 +iy)1
for k=1,2, .... To this we add that if Tn+2(Z):=(I-z2 ) Tn(z) then
max'E/, II(dk/dzk)((l-z2) p(z»1 :;:; IT;,kL(1 + iy)l for k = 3,4, .... The result can be
looked upon as an inequality for polynomials with a parabolic majorant, analogous
to that of Duffin and Schaeffer. '.{:' 1992 Academic Press, Inc.

1. INTRODUCTION

Let us denote by II . II the maximum norm on [ -1, + 1] and by f!J" the
set of all polynomials of degree at most n. For p belonging to f!J" and
vanishing at - 1, + 1 let

Ip(x)1
Ilpl\*:= sup ~;

- I < x < 1 V 1- x 2

Ip(x)1
Ilpll**:= sup -1-2'

-1<x<1 -x

Further, let Tn(x) := cos(n arc cos x) be the nth Chebyshev polynomial of
the first kind and Um(x) := sin«m + 1) arc cos x)jsin(arc cos x) the mth
Chebyshev polynomial of the second kind. We also need to introduce the
polynomials

Let p E q>". According to a classical result of W. A. Markoff [2]
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for all kE N
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if Ilpll ~ 1. (1)
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It is also known [6, 3J that

IIp(kill :s:; Iv~k)( 1)1

ilp'k)11 :s:; Ir;,k l (1)1

for all kE N

for k = 2,3, ...

if !I p II * :s:; 1;

if Ii p Ii ** :s:; L

(2)

(1 ~ \
i _·.l )

As regards the missing case k = 1, when II p II ** :s:; 1 we have [5 ]

whereas for even n

IIp'll:S:; 1<,(1)1

IIp'll :s:; Ir~(O)1

if n = 4,

for odd n;?; 5, (3.3)

as n ~ 'Y-. (J4)

Here it may be added that Ir~(n/2(n-2))i=n-2-n2/8n+O(n- 2
\ as

A remarkable generalization of (1) was found by Duffin and Schaeffer
who proved (see [1, Theorem IIJ or [8, pp. 130-138J):

THEOREM A. Let p E :!J". If p(x) is real for real x and if

for v = 0, 1, ..., n, 14i

then for kE N

-1 :s:; x:S:; 1, - ,x, < y < (X). (5 )

The corresponding extension of (2) which was obtained in [7J reads as
follows:

THEOREM B. Let

~o := 1, ~n:= -1,

If p E:!J" such that

• (2V-11[\
and ~v :=cos --:, "n-1 ,{,.j

v = 1...., n - 1. (6 )

then

for \' = 0, 1, ..., n,

for k= 2, J, ...

\7)

(8)
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whereas
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IIp'll ::;;(n-1)(~IOg(n-1)+3). (9)

Further, if p(x) is real for real x then

for (x,Y)E[-l,l]x~ and k=2,3....

(8')

In (8), (8') equality holds if and only if p(x) == yvn(x) where II'I = 1.
Besides, the number 21n appearing on the right hand side of (9) cannot be
replaced by any smaller number not depending on n.

Here we prove

THEOREM 1. For given n ~ 3, let

(
vn )

Av=An,v:=cos n-2
/

' v = 0, 1, ..., n - 2. (10)

Ifp(x) := (1- x 2
) q(x) is a polynomial of degree at most n such that

then

Iq(Av)1 ::;; 1 for v = 0, 1, ..., n - 2 (11 )

for k= 3,4, .... (12)

Further, if p(x) is real for real x, then

for (x, y) E [ - 1, 1] x ~ and k = 3, 4....

(12')

2. AUXILIARY RESULTS

We prove Theorem 1 by an argument analogous to that of Duffin and
Schaeffer [1]. However, certain details become considerably harder and
some new properties of Tn need to be proved. The first two lemmas are
taken from [1].

LEMMA 1 [1, Lemma 1]. If
n

P(z)=c n (z-x,.)
l-'= 1
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is a polynomial of degree n with n distinct real zeros and if p is a polynomial
of degree at most n such that

Ip'(xJI ~ 1P'(x,ll

then for k = 1, ..., n

(v = 1, ... , 11),

at the roots of p(k - 1 )(x) = o.

LEMMA 2 [1, Theorem I]. Let P be a polynomial of degree n v,;ith n
distinct real zeros to the left of the point 1 and suppose that

IP(x+iy)~ IP(1 +iy)1 for (x, y) E [ -1. 1] x R

If P is a polynomial of degree at most n with real coefficiems such that

Ip'(x)1 ~ IP'(x)1

then for k = 1, 2, ..., n

whenever P(x) = 0,

for (x, y) E [ -1, 1] x R

The next result is needed to prove a new property of Tm contained in
Lemma 4.

LEMMA 3. If P is a polynomial of degree 111 having all its ::.:eros ill

1m z > 0, then for ~ ~°
(m 2 + 2) p(z) + 3(z - i() p'(z)

has all its zeros in 1m z > O.

Proof Let z I' := x" + iyl' (Il = 1, ..., m) be the zeros of p. Further, let
z=x+iy, xEIR, yEIR. Then for y~O

{
P'(Z)} m 1 m -(v-y)

1m -- = I 1m = I - I' > O·
p(z) I'~l x-xl'+i(y-y,,) I'~l 1::,:-zI'1

2
'

if ¢ ~ 0 and z - i~ # 0 then for y ~ 0

Hence if (~O, then -(m2 +2)/3(z-i()#p'(z)/p(z) for Imz~O provided
z-i¢#O,i.e., (m 2 +2)p(z)+3(z-iOp'(z)#O for Imz~O and all ¢~O
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except possibly when z - i~ = O. But if z - i~ = 0 then (m 2+ 2) p(z) +
3(z-i~)p'(z) reduces to (m 2+2)p(z), which is#O for Imz~O, by
hypothesis.

LEMMA 4. The polynomial Tm+2(Z):= (l-z2) Tm(z) satisfies

for (X,y)E [-1,1] x R

Proof First we note that

r;~ + 2(Z) = (1 - Z2) T~,(Z) - 4zT;n(z) - 2Tm(z)

= zT'm(z) - m 2 Tm(z) - 4zT~,(Z) - 2Tm (z)

= -3zT'm(z)-(m2 +2) Tm(z).

Now let ~ E [0, 1]. Then for x E [~, CfJ),

Hence

does not vanish in the half-plane {z E iC: Re z;?; ~} whenever lod < 1.
Applying Lemma 3 to the polynomial RAiz + 0 we conclude that
(m 2 + 2) R,,(iz +~) + 3(iz + 0 R~(iz + 0 does not vanish for 1m z ~ 0, i.e.,

a{ (m 2 + 2) Tm(z) + 3zT~,(Z)}

+ (m 2+2) Tm(l- ~ +z) + 3zT'm(I- ~ +z) #0

for Re z;?; ~ and lal < 1. Setting z = ~ + iy this implies

IT;:'+2(~ + iy)1 == l(m2+ 2) Tm(~ + iy) + 3(~ + iy) T'm(~ + iy)1

~ l(m2 + 2) Tm(1 + iy) + 3(~ + iy) T'm(1 + iy)l. (13)

Obviously

is a point in the right half-plane. Therefore

11 + (~ + iy) wi ~ 11 + (1 + iy) wi
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and hence the right-hand side of (13) is majorized by

also holds for ~ E [ -1,0).

343

2.1. Lower Bounds for IT",(x)1 at the Zeros of r;n + 2

Given In EN, let AI' = lom.1' := cos fln/m (fl = 0, 1, ..., In). The zeros of r~'4 2

all lie in ( -1, 1) and are symmetrically situated with respect to the origin.
Denoting them in decreasing order by ~I' (p = 0, 1; ..., m) we easily see that
~;! E (cos(2fl + 1)n/2m, ieI') for fl = 0, ..., [(m - 1)/2J and that ~m.2 = (; in
case m is even. With each ~II we associate the quantity

_ ._ I m 2
(i- ~~)

811 -8m,;I'- ,I 2(1 ~2'1' 4~2_'
v m -SII iT "II

Using

in conjunction with the identity

we obtain that

(fl = 0, 1, ..., m).

In the next lemma we obtain a lower bound for 81' which is not sharp
but is adequate for our purpose.

LEMMA 5. Let m?:: 3. For fl = 1, ..., .'11 - 1

(14 )

Proof For each 1n,81' is a decreasing function of I~,..I and so it
is enough to prove (14) for fl = 1. Simple calculation shows that
8 1 = .957214044... if m = 3 whereas 8 1 = .924950591... if In = 4. So let m?:: 5.
Clearly

n n2 rr" 4.772448
~ I < AI = cos - < 1 - -,+--:::;; 1 - (15 )

m 2nr 24111 4
/112
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Hence for m ~ 5 we have m 2
( 1- ~i) > 8.633845604 which in turn implies

that

e 8.633845604 = 826674148.
1 > 12.633845604 .

Now we need to estimate AIl - ~Il from below. This is done in

LEMMA 6. For p= 1, ..., [(m-l)/2] we have

AIl-~Il>(3ell-l) ~~=2~i-3(I-ell) ~~.
m m nr

Proof We have

- 2AIl Tm(A Il ) = [(I-x2) T:r,(x) - 2xTm(x)]~:

= r" {(1- x 2) T~,(X) - 4xT:r,(x) - 2Tm(x)} dx

'"

f
Ail

= , {-3xT~,(x)-(m2+2)Tm(x)}dx

'"
= [ -3xTn,(x)]~: - (m 2-1) [" Tm(x) dx

'"
ri/l

= -3AIlTm(AIl)+3~IlTm(~I,)-(m2-1)J" Tm(x)dx

"

and so

3~IlTm(~Il) - ~Il sgn(Tm(AIl »

= All T m(AIl ) - ~Il sgn(Tm(A. Il » + (m2- 1) f" Tm(x) dx.

'"
Since IS:" Tm(x)dxl ~AIl-~1l and ell>~ it follows that

'"
(3e11- 1) ~Il < A. 11 - ~Il + (m 2

- 1)(AIl - ~Il)'

which is what we wanted to prove.

At this stage it is important to obtain a good upper bound for ~~.

LEMMA 7. Let m ~ 2. For J1. = 1, ..., In - 1

(16)

(17)
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118)

Proof We need to prove (17) only for f.1 = 1. If m = 2, then (1 = 0 and
so (17) holds. It is a matter of simple calculation that ~ i = .170563828 <
9/19 = 1 - 1O/(m 2 + 10) if m = 3 whereas ~i = .403143528 < 8/13 =
l-lO/(m~ + 10) if m = 4. Now let m;?; 5. From (15) and (16) it follows that

" 4.772448 1 e ."
(1<1- ? -)(3 1-1)(1'

m- nr

Since e1 ;?; .826674148 we get

" 1- 4.772448/m 2 6.252470444 9.253796588
';1< 2<1-? +---,--

1+ 1.480022444/m nr m4

5.882318581:s;; 1- ----;;---
m2

Hence
):2 10.38057029 10
"1:S;; 1 - ? < 1-? O·

nr nr+ 1

This proves (17). As regards (18), it is a direct consequence of (17).

We use (18) to obtain a crucial lower bound for ell depending on bu.

LEMMA 8. For f.1 = 1, ..., [(m - 1)/2]

Proof According to Taylor's theorem

111e = =' ()(J )=()(O)+J ()'(0)+-J 2 ()"(0)+-J 3 e"'(O)
fl ~1s: . fl fl· 2! fl 3! 1-'

v +ul'

where 0:S;;6':s;;bl'

by (18)
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2.2. The Sign of((I-x2)2T:r,(x)/(x-AIl ))" at a zero ofr:r,+2

LEMMA 9. Let ( be a zero of r:n + 2' Then for J1 = 0, 1, ..., m

where

¢J((, t) := (( - t){ 3(((m2- 4)(1- e) + 2)(t - O~

- 2( 1- e)(m2(1- e) + 6(2)(t - () + 4((1- e)2}.

Proof It is a matter of simple calculation that

~ {(1-X
2

)2 T:r,(X)}
dx X-All

{(I_x2)2 T;;'(x) -4x(1-x2) T:r,(x)} (x- All) - (1- X2)2 T:r,(x)
(x - A

Il
)2

(1- 3AIl X+ x 2+ 3A Il X
3-2x4

) T:r,(x) + m2( -All + X+ Awy2-x3) Tm(x)
(x - A

Il
)2

and

A(x)(1-x2) T:r,(x) - B(x)(1-x2) Trn(x)
(x- A

Il
)4

where

A(x) := (x - AIl )3 (m2+ 3 - (m 2+ 6) x 2)

- 2(x - A
Il
)(I- 3A

Il
X + 2x2)(1 - x 2),

B(x) := (x - A
Il

)3 5m2x + (x - A
Il

)2 2m2(1 - x 2).

At a zero ( of r:r, + 2 we have (1 - e) T:r,( 0 = 2(Tm ( 0 and so setting

At(O :=3({(m2 -4)(1-e)+2},

A 2(() := 2(1- (2) {m 2(1- e) {m 2(1- e) + 6e},

A 3(() := 4((1- (2)2
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Remark 1. It is important to note that for ~ = 0, which is one of the
zeros of r;1l + 2 when m is even,

for /1=0,1, ..., m.

We claim that rjJ( (11' -i,.)):°for j1 = 0, 1, ... , m and v = 0, 1, ..., m. This
crucial fact is established in the next four lemmas. The proof which makes
use of Lemmas 5-8 is long and tedious. The difficulty lies in the fact that
rjJ( ~11' t) changes sign in (- 1, 1) except when m is even and f1 = m/2.

LEMMA 10. The function ¢>(~, t) has a zero in (1,:xJ) ifO<~< 1.

Proof Since rjJ(~, t) --+ -:xJ as t ---+ + Xj it suffices to verify that

¢;(~, 1) > 0.

As is easily seen,

where

(19)

and so it is enough to check that g(0 > °for °< ( < 1. Indeed, if m = !
then g(i;) = _3(3 + 2~2 + ~ + 2 > 2, whereas if m = 2, then g(() = _4~2_

2( + 8 > 2. In case m): 3 we get the desired conclusion by noting that
g(-2)= -1211'12 +44<0, g(-I)=6>0, g(1)=2>O, g(2)= -12<0,
g(t) ---> + Xl as t --+ + CXJ.

LEMMA 11. For .u=l, .." [(m-1)/2J

Proof We have to verify that if

L((, t) := ¢J((, ~)
t - t;
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then

We have
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L ( ~ /l' ~ /l + (3(} /l - 1)~) ~ O.

L=L (~/l' ~/l+ (3(}/l-1) ,~)

= -~ {m 2(1- ~~) - 4(1- ~~) + 2} {4-12(1- (}/l) +9(1- (}/l)2}
m

12 .3 2 12 3 { ?}= - ~ (1 - ~ ) - - ~ - 4( 1- ~ -) + 2m2 /l /l m4 /l /l

+ ~~(1-(}/l)~~ {m2(1-~~)-4(1-~~)+2}

27 (})2 3 {2 2 • J }- m4 (1- /l ~/l m (1-~/l)-4(1-~~)+2

- --; (1- (} /l) ~i 1 - ~~) {m 2
( 1- ~~) + 6~~}.

m

By Lemma 8

Hence
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24 "3 2 9=-c; (1-~ )--(1-8 )m4 I' I' m4 I'

by Lemma 8

=24):3(1_"2)_~(1_8);:3(8_ v=' 24,=" j;\
4 <, 1< c; I' 4 I' <, I' 1Oc:; I' - ? '" u T 3'J I' Im m m- ,

by Lemma 5.

LEMMA 12. For J.1 = 0, 1, ... , [(m - 1)/2J and :" = 0, 1, ..., In

349

(20)

Proof From Lemma 10 we know that ¢;(~I'" t) has a zero in (l,x).
Besides, ¢;(~I" t) has a zero at ~I' with

Hence if J1 = 1, ..., [(m -1 )/2] then, in view of Lemma I!, ¢J(~I" t) must
have a zero in (~I"~I'+(381'-1}~p/m2) as well. Being a polynomial of
degree 3 in t the function ¢;( ~ 1" t) has no other zeros and indeed should
be positive on [-1, ~I') u (~I' + (381' -1) ~jm2, 1]. It follows from.
Lemma 6 that the interval UI" 1] is contained in [~I' + (381' - I) ~1'/m2, 1J
and so ¢;(~1"t}~0 for tE[-I'~I']u[A,u,I]. This proves (201 for

640169 ')·9
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Jl= 1, ..., [(m-l)/2]. We can argue the same way in the case Jl=O;
although Lemma 11 is not available, (19) serves the purpose.

More generally, we have

LEMMA 12'. (20) holds for Jl = 0, 1, ..., m and v = 0, 1, ..., m.

Proof That (20) holds for Jl = ml2 when m is even was pointed out in
Remark 1. It also holds for Jl = [(m + 1)/2], ..., m since

and

~f.l = -~m-f.l (/1 = 0,1, ..., 111),

Now we are ready to prove

Av=-Am _,. (v=O,l, ...,m).

LEMMA 13. Let p(x):= (1-x 2
) q(x) be a polynomial of degree at most

n such that Iq(x)1 ~ 1 at A,. = cos(vnl(n - 2)) (v = 0, 1, ..., n - 2). Then at the

roots of !~(x)=°
Ip"(x)1 ~ 1!~(x)l·

The equality can occur only if p(x) == 'Y!,,(X) for some constant I', 11'1 = 1.

Proof Let l/J(x) := (1- x 2
) T;,,(x), where m := n - 2. Then

(, )= ~ q(A v ) l/J(x)
q x 1... ,f,'( 1 ) •

v=o'l' A v X-A,.

and so

Using Lemma 9 we deduce that if ¢ is a root of !~(x) = 0, then

(21 )

In particular
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and since Trn(A v) and l/J'(A,.} = -AvT;,p")-m"T,,,().,) are of 0pPo3ite sign
this gives

"(")= _ Trn(O;'. [1_1_1 ¢;(~, ,i,)
'nS 1 -2L.. ,J.I(")'. ')4'- S \'=0 0/ /·v, l~ -/~v.

ii" '~
t~-'I

Now (q()'v)l:(; 1 by hypothesis and ¢;(~, .J.v)~O according to Lemma ~2',

so comparing (21) and (22) we obtain

where equality holds if and only if qU,; = 'i'T",\Avl (',' = 0, 1, "', m), I.e.,

pix) == i"n(x) for some constant I" h'l = 1.

3. PROOF OF THEOREM 1

Let p(x) := (1 - x 2
) q(x) be a polynomial of degree at most n such thEt

Iq(A,):(; 1 for v = 0, 1, ..., n - 2. Further, let pix) be real for real x. If
p(x);t= ± 'n(x) then by Lemma 13 there exists a constant c> 1 such that
icp"(x)1 :(; 1r;;(x)1 at the zeros of r~. Since the zeros of r;, are all real and
distinct it follows from Lemma 1 that Icp"'(x)1 :(; Ir::'(x) I at the zeros of r:;.
Now Lemma 2 applied in conjunction with Lemma 4 gives

, 1
!plk)(X+ iYll :(;-lr~,k)(l + iy)j

c

for (x,Y)E[-l,lJx~ and k=3,4, ....

Hence (12') holds. In particular

for k = 3, 4, .... (23)

In this latter inequality, the condition that pix) is real for real x can be
dropped. To see this, let p(x):= (1-x2

) q(x) be a polynomial of degree at

most n such that IqUv)1 :(; 1 for v= 0, 1, ... , 11 - 2. Let Ilp1k)11 be attained at
x* E [ -1, 1] where p(kl(X*) = IIp(klll ei~. Consider p*(x) := Re{ e -i~p(X)} =
(1- x") q*(x) which is a polynomial of degree at most n such thm
Iq*U,,)1 :(; Iq(AJI :(; 1 for v = 0,1, ..., n - 2. Further, p*(x) is real for real x
and so by (23)

for k = 3, 4, ....

But

and therefore (12) holds.
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Let

and set
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4. AN ADDENDUM TO THEOREM 1

-1 = :)'0<)'1 < ... <Ym:= 1

m

w(x) := (1 + xr1 (1- x)"" n (x - YI'),
I'~O

where n1, ll z are non-negative integers. Further, let

and denote by

w(x)
wl.(x) :=--,

x-YI'
J1 = 0, 1, ..., m,

J1 =0,1, ..., m

the zeros of wik
). Now suppose that Pn is a polynomial of degree

11 :=m+n 1 +n z having the following properties:

(i) it has zeros of multiplicities n1 and nz at -1 and 1, respectively,

(ii) the polynomial FI/(x) :=Pn(x)!(1 +X)"I (l-x)"2 has alternating
signs at the points Yo, Y1, ..., Ym·

It was proved in [4, Theorem 1] that if p(x) := (1 + X)"I (1 - x )n" p(x) is a
polynomial of degree at most n such that

J1 = 0, 1, ..., m, (24)

and p(x) is real for real x then for z lying outside the open disk with
(CX m ,1' CX O•n - k ) as diameter, we have

Ip(k)(z)1 :::; IP~k)(z)l.

The statement of Theorem 1 in [4] contains a slight inaccuracy, namely,
the hats over p and Pn in (24) were inadvertently omitted.

Applying the above result with PI/(x):= (1-XZ) Tn_Z(x) and

we obtain

J11C
Y '= -cos--

1'. n-2' J1 = 0, 1, ..., 11 - 2

THEOREM 2. Let p(x) := (1 - XZ) q(x) be a polynomial of degree at most
n such that (11) holds. If p(x) is real for real x then for k = 0, 1, 2, ...

(25)
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for 171 ~ a'e> \vhere rJ." is the largest zero of

353

According to a result in [3J, inequality (25) does not hold at points
immediately to the right of - (X" and at those immediately to the left of ex".
So in Theorem 2 rJ." cannot be replaced by any smaller number.

5. SOME REMARKS ON THEOREM 1

5.1. In Theorem 1 we have proved, in particular, that for k = 3, 4, ".
the conclusion of (3.1) remains true under the weaker hypothesis that
p(x)/(l-x1

) is bounded by 1 only at the points x,,=cos(vn/(n-2)):
v = 0, 1, ..., n - 2. This raises the question if there are n - 1 other points in
the interval [ -1, 1J with the same property. The answer is in the negative.
Indeed if E is any dosed set of points in [ -1, 1J which does not include
all the points xv=cos(vn/(n-2)) then there exists (see [1, p. 526J; also
see [8, Remark 3 on p. 138J) a polynomial q of degree n-2 which is
bounded by 1 in E whereas q(k)( 1) > T;,k~ 1( 1) for k = 1, 2, ..., n - 2. So
p(x) := (l - x") q(x) serves as a counter example.

Ip(kl(I)1 = 2k q(k-l)(l) + k(k-l) q,k-2I(l)

> 2k T;,k_-21l(1) +k(k-l) T;,k_-21)(I) = lr;,k)(1 )[.

5.2. It is natural to wonder if (12') or at least (12) holds also for
k=2. Further, one may ask if (3.2), (3.3) and (3.4) hold if only (11) is
satisfied. The example p(x):= (1 - x 2

) q(x), where q(x);= - x 2 + X + 1,
shows that (3.2) does not hold under the weaker assumption. Indeed
Iq(cos(vn/2»1=1 for v=0,1,2 whereas IIp'il=(9+19 v /57)/72>2=
IT~(1 ll· The other parts of the question will be discussed elsewhere.

5.3. Theorem 1 may also be stated as follows.

THEOREM 1'. IfP is a polynomial of degree at most n satis/ring (4) then

(or k= 3, 4, ....

Further, tf p(x) is rea! for real x, and Iv := {x + iy; -1'::; x'::; I} then

for y E iR and k = 3, 4.....
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