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For yeR let I, :=={x+iy: —1<x<1}. It was proved by R.J.Duffin and
A. C. Schaeffer that if p(x):=3"7_,a,x" is a polynomial of degree at most » with
real coefficients such that |p(cos(va/n))l <1 for v=0,1,..,n and T, is the nth
Chebyshev polynomial of the first kind then max,., |p"*(z)| <|T¥(1+ip)|
for k=1,2,... To this we add that if 7, ,(z):=(1—z%)T,(z) then
MAax, . (@5 d=" W (L — 22) pl2)) < Je¥) 5t +ip)} for k=3, 4, ... The result can be
looked upon as an inequality for polynomials with a parabolic majorant, analogous
to that of Duffin and Schaeffer.  © 1992 Academic Press, Inc.

1. INTRODUCTION

Let us denote by || - || the maximum norm on [—1, + 1] and by Z, the
set of all polynomials of degree at most n. For p belonging to %, and
vanishing at —1, +1 let

,_ lpe)l - lp(x)|
A v e N

Further, let T,(x) := cos(n arc cos x) be the nth Chebyshev polynomial of
the first kind and U,(x):=sin((m + 1) arc cos x)/sin(arc cos x) the mth
Chebyshev polynomial of the second kind. We also need to introduce the
polynomials

D.(x):=(1=x*) U,_o(x),  1,(x):=(1=x*) T, _,(x).

Let pe #,. According to a classical result of W. A. Markoff [2]

Ip* N < T®(1)y  forall keN if |pl<l1. (1)
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It is also known [6, 3] that

120 < log(1) forall keN i frll.<h (

[ %]

Lad

Ip <™ for k=23.. I [plu<L

"

As regards the missing case k=1, when | p|,, <1 we have [5]

Ipll<ie(l)l  if n=4, 3.2}
lp'll <|t(0)  forodd n=S5, (3.3)

whereas for even n
l|p’!|<n—2—g—’;+0(n‘"z,b as 7 — oL, (34)

Here it may be added that |7/(n/2(n—2))l=n—2—n%8n+ CGi{n~?} as
n— G,

A remarkable generalization of (1) was found by Duffin and Schaeffer
who proved (see [ 1, Theorem I1] or {8, pp. 130-13871):

THEOREM A.  Let pe P,. If p(x) is real for real x and if

VI
1;7 (cos ——)‘ <1 for v=0,1,..,n {4
n
then for ke N
PP+ NSITEOM +iv)l,  —i<x<l, —w<y<ow.  (5)

The corresponding extension of (2) which was obtained in [7] reads as
follows:

TueEOREM B. Let

2v—1x
or=1, &,:=—1, and ¢, =cos< e I\, v=1 _.,2-—-1 (5}
n—1 2/
If pe 2, such that
IpEN<(L=E)" for v=0,1,..n, {7

then

1PN <IWEM) for k=23, 8)
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whereas

2
np'us(n—l)(;log<n—1)+3). ©)

Further, if p(x) is real for real x then

Ip®(x+ i) < 0P +ip)  for (x,y)e[—1,1]xR and k=2,3..
(8"

In (8), (8') equality holds if and only if p(x)=yv,(x)} where [y|=1.
Besides, the number 2/z appearing on the right hand side of (9) cannot be
replaced by any smaller number not depending on #.

Here we prove

THEOREM 1. For given n =3, let

iz) y=0,1,.,n—2. (10)

A,=4,,:1=cos <n —
If p(x) := (1 — x?) q(x) is a polynomial of degree at most n such that
lgi)l <1 for v=0,1,.,n—2 (11)
then
PPl <izPW for k=34, ... (12)

Further, if p(x) is real for real x, then

PP +iy) <ItP(A+ip)l for (x,y)e[—1,11xR and k=3,4...
(12)

2. AUXILIARY RESULTS

We prove Theorem 1 by an argument analogous to that of Duffin and
Schaeffer [1]. However, certain details become considerably harder and
some new properties of T, need to be proved. The first two lemmas are
taken from [1].

Lemma 1[1,Lemmal]. If

P)=c [] (z—x.)

v=1
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is a polynomial of degree n with n distinct real zeros and if p is a polynomial
of degree at most n such that

PN P(x)l (v=1,.,m)
then for k=1,..,n
|pX(x) < |PM(x)|

at the roots of P*~(x)=0.

Lemma 2 [1, Theorem I]. Let P be a polynomial of degree n with n
distinct real zeros to the left of the point 1 and suppose that

IP(x+ip)<|P(L+iy)l for {x3ye[—1L1TxR
If p is a polynomial of degree ar most n with real coefficienis such that
| p'(x)] < | P'(x)] whenever P{x)=0,
then for k=1,2,..,n
PP+ i) <IPP(+ip)l for (xy)e[~1L11xR.

The next result is needed to prove a new property of T, contained in
Lemma 4.

Lemma 3. If p is a polynomial of degree m having all its ceros in
Imz>0, then for £=0

(m®+2) p(z) + 3(z— i) p'(2)
has all its zeros in Im z>0.

Proof. Let z,:=x,+iy, (p=1,..,m) be the zeros of p. Further, let
z=x+1iy, xeéR, peR. Then for y <0

(z - 1 o —{y—y
Im{——p( )}= Yy Im -y ST

p(:) pu=1 x——xliJ‘_i()l_.}'u) pu=1 ‘:—Zu|2

if £20 and z—iZ #0 then for y <0

——<0.
3 jz—il°

Imr m2+2}_m2+2 p—¢&
{ 3(z—-iE)

Hence if =0, then — (m? +2)/3(z —i&) # p'(z)/p(z) for Im z <0 provided
z—i¢#0,ie, (M*+2)p(z)+3(z—i€) p'{z) #0 for Imz<0 and all £20
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except possibly when z—i¢=0. But if z—i¢=0 then (m*+2)p(z)+
3(z—i¢) p'(z) reduces to (m>+2)p(z), which is#0 for Imz<0, by
hypothesis.

LEMMA 4. The polynomial t,, , (z) := (1 —z*) T,,(z) satisfies
[t ax+ )<l (1 +) for (xp)e[—1L1]1xR.
Proof. First we note that
T 2(2) = (1=2%) T, (2) — 42T ,(2) - 2T,,(2)
=zT (z)—m>T, (z)—4zT,(z)— 2T ,(z)
= —3zT,(z)— (m*+2) T,(z).
Now let £ [0, 1]. Then for xe [, o0),
ITolx + )| <|T(1+x— &+ iy)l.
Hence

Ra(z) ::aTm(Z)_f— Tm(1—§+z)

does not vanish in the half-plane {zeC:Rez>¢} whenever |af<1.
Applying Lemma3 to the polynomial R,(iz+¢) we conclude that
(m?+2) R, (iz+ &)+ 3(iz + &) R.(iz + &) does not vanish for Im z<0, i.e.,

a{(m*+2) T,(z)+3zT,,(z)}
+(m?*+2) T, (1 —-E+2)+ 32T (1 —E+2)#0

for Re z = ¢ and |x| < 1. Setting z = £ + iy this implies
[Tms2(E+ P = [(m*+2) T, (E+ ip) + 3(E+iy) T, (E + iv)|
<@ +2) T,,(1+iy)+3(E+iy) T, (L+iy)l. (13)
Obviously

e 3T (1+iy)
T (mr+2) T (L +iy)

is a point in the right half-plane. Therefore

[T+ (E+iy)w| <1+ (L+iy)wl
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and hence the right-hand side of (13) is majorized by
Hm® +2) T (L+ip) +3(L+iy) Tl L+ ) = |10 o1 + iy
Since |1, {—2)| =t . 2(2) =10, 2(Z)| the inequality
1T 2§+ D) S ol E+ )
also holds for e[ —1,0).

2.1. Lower Bounds for |T,(x)| at the Zeros of t

7
m+ 2

Given meN, let A, =4, , :=cos un/m (p=0, 1, ..., m). The zeros of 7,,, . .
all lie in (—1, 1) and are symmetrically situated with respect to the origin.
Denoting them in decreasing order by &, (=0, L. .., m) we easily see that
Cu€(cos2u+ 1)n/2m, 4,) for u=0, .., [(m—1)2] and that {,,=0C in
case m is even. With each ¢, we associate the quantity

m (1 —¢&2)

TN (- Y+ 4L

f,=0

I
Using
(1=&) T,(8,) =28, T,4,)

i conjunction with the identity

(1 =x?) [T (x) 2+ m?{T,(x)}? =m?
we obtain that
le(é‘u)':H (,Ll=0, 1, e :‘?’5}‘

m

In the next lemma we obtain a lower bound for 8, which is not sharp
but is adequate for our purpose.

Lemma 5. Letmz3. For u=1, . ,m—1

0,>.826674148. {14

Nt

Proof. For each m, 8, is a decreasing function of |{,| and so it
is enough to prove (14) for pu=1. Simple calculation shows that
0,=.957214044... if m =3 whereas 6, =.924950591.. if m=4. Sc let m = 3.
Clearly

n? + n* < 4772448
2m* Umt m>

. T
<A, =cos—<1—
m
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Hence for m =5 we have m*(1 — £7)> 8.633845604 which in turn implies

that
/ 8.633845604
———— = 826674148.
12.633845604 826674
Now we need to estimate 4, — ¢, from below. This is done in

LemMaA 6. For u=1, .., [(m—1)/2] we have

$u 2, Sy

A, —¢&,> (30, —l)m— o £—-3(1-0, )—— (16)

Proof. We have

=24, Tp(4,) = [(1 = %) Tpp(x) = 2T, (x)]
=f“ {(1=x2) Tl (x) — 4xTy(x) — 2T,,,(x) } dx

Su

Au
=f {—3xT%(x) — (m?+2) T,(x)} dx

[—3xT,(x)]%— (m2—1)f” T,(x) dx

3L TAR) 436, To(E) — m? 1) [ T, (0 d

Su

and so
38, T,(&,)— &, sen(T,,(4,))

= A Tolh,) — &y 80T (A, )+ (m? 1) [ T, (x)

Since | fi’,’i T,(x)dx|<A,~¢&, and 6, >} it follows that
(30, — 1) &, <A, =&+ (m*—1)(1,—¢,),
which is what we wanted to prove.
At this stage it is important to obtain a good upper bound for fi.
LemMa 7. Let m=2. For u=1,..m-—1

10
22 2 17
ST TE 10 (17)
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and so

£2
byt <

[ m2(1_ ")

Wl b2

118}

>4

e

Proof. We need to prove (17) only for u=1. If m=2, then &, =0 and
so (17) holds. It is a matter of simple calculation that ¢?=.170563828 <
9/19 = 1 — 10/(m* + 10) if m = 3 whereas &} = 403143528 < 8/13 =
1 —10/(m* + 10) if m=4. Now let m > 5. From (15} and (16} it follows that

o

4772448 1
G<l=————5

; 30, -1 &,

m- i

Since @, > .826674148 we get

. 1 —4.772448/m? 6.252470444 9.253796588
o< < 1— 2 + F
1 + 1.480022444/m m m
5.882318581
Sl
m*
Hence
5% <i— 10.380517029 { 10

m’ T + 10
This proves (17). As regards (18), it is a direct consequence of {17).
We use (18) to obtain a crucial lower bound for §, depending on J,.

LemMa 8. For u=1,.., [(m—1)/2]

1 ) ’ 1 52 ‘E N "
0.= /————=?9(5u)=9(0)+0u3(0)+§();6 (0)-1-5()20 (0)
\/’ll+5u - .
|
+5029“"’(5') where 0<é'<96,
=1—16,+362— %0, + 001 +0') "7
>1—36,+§0;— 350,
>1-10,+382—-152 by (18)
=1-143,+30..
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2.2. The Sign of (1 —x*)*T,(x)/(x—2A,))" at a zero of T,, .,
LEMMA 9. Let & be a zero of 1,,, . Then for u=0,1, ...,m

1-& & {(1_X2)2T;n(x) _ 94
Tm(é) dx2 x——ly } x:!j_(é—ly)‘t,

where

B, 1) = (£ — ) {3E((m* = 4)(1 = &) + 2)(1 = &)’
—2(1 = E)(m*(1 - &) +6&%)(t — &) +45(1 - &)*}.

Proof. 1t is a matter of simple calculation that

a {(1 =) T:,,(x)}

dx X—Ay
{0 =X T (x)=4x(1 =x°) T,,(x)} (x = 4,) — (1 =x*)? T,(x)
a (x—4,)?
(=32, x+ X%+ 32,x° = 2x%) T, (x) + mP (=4, + x + 4,x° = x°) T,(x)
h (x—4,)?
and
d’ ((1-x%)T,(x)
— 2 —— ———— e e e
(1=x )dxz{ x—2, }

_ A1 =x?) T),(x) = B(x)(1 —x*) T,(x)

B (x—4,)°* ’
where

A(x) :=(x—1,)* (m* +3— (m*+6) x?)
—2(x—A,)(1 —34,x+2x%)(1 — x?),
B(x) :=(x—A4,) 5m’x+ (x — 4,)* 2m*(1 — x?).

At a zero & of 1, , we have (1 — &) T,(&) = 2¢T,,(¢) and so setting
A,(&) :=3¢E{(m* —4)(1 - &%)+ 2},
A5(8) :=2(1 &%) {m*(1 = &%) {m*(1 — &)+ 6£2},
A3(E) =401 - &%)
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Cad
N
-2

we get
2 ((1=x? T
(1_52) d {( X ) m(‘c

dx? x—4

_ AU E A, + A ENE— A, + AS(ENE—Ay) o,

——
(-

m

[y

'”)4 mlC)

—
Ay
|
e

_ ¢,(é, {1“)4 T, (2).
(E—4,)

Remark 1. It is important to note that for £ =0, which is one of the
zeros of ), , when m is even,

P(Ss 4,0 = (0, /lu)=2m2 ,IZZO for u=0,1, .., m

We claim that ¢(&,,1,)>0 for u=0,1,.,m and v=0,1, .., m This
crucial fact is established in the next four lemmas. The proof which makes
use of Lemmas 5-8 is long and tedious. The difficulty lies in the fact that
#(&,, 1) changes sign in (—1, 1) except when m is even and u=m/2.

LemMa 10.  The function ¢(&, 1) has a zero in (1, <) if O << 1.

Proof. Since ¢(&, 1) > — o as t — + ¢ it suffices to verify that

$(¢,1)>0, (19)
As is easily seen,

where
gl&) 1= (m> — )& — 2m?> — )& — (m* — )& + 2%,

and so it is enough to check that g(£)>0 for 0< &< 1. Indeed, if m=1
then g(&)= —3&3+ 2824+ £+ 2>2, whereas if m=2, then g(¢)= —4¢* —
26+8>2. In case m>3 we get the desired conclusion by noting that
g(—2)=—12m*+44<0, g(—-1)=6>0, g(1)=2>0, g(2)=—-12<(,
g(t) > +mast—> +c.

Lemma 11, For u=1, .., [{(m—1)/2]

N &
¢<;,“ £, +(36,—1) ﬁ)ZO'

Proof. We have to verify that if

L =250
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then
Cu
L& ¢,+(30,—1)=5]=0.
m?
We have
_ . Su
L=L v (30—1)-—2
m
—ﬁzl 4(1 2V 4 —-12(1—-80 9(1—4,)
= = m( —&)—4(1 =& +2} {4—12(1-6,)+9(1—06,)}
6 1-6 1-¢&2 21 2y 4+ 68 24 1 —¢2
_W( - u)éy( _gy){,n( _Eﬂ)_l. }+_2C( ﬂ)
12 12 ,
=?fi(1—fi)‘wéi{—4(1—5;”2}
361 0)E {m*(1—E3)—~4(1 —E2)+2
+W( —0,)& (m*(1-¢)—4(1 =) +2}
27192321241“22
_W( —0,)2 & {m*(1-8)—4(1-¢)+2}
6 1—-8,) ¢, (1—¢&2 2(1—¢2 £2
_P( —0,) (0 =&) {m* (1 =S+ 685}
By Lemma 8
-8 < Zéi 1 1654 E B 4“
S 8) Am (- m(1-8) m(1—C)
Hence

L2280 -E) a0 ) g

144 72
——(1-0,) &1~ )+—(1- W &
m

27
— 5 (10,0 (m*(1— &) —4(1 - &) +2}

{ 282 4¢

Tl i=E) mAl— c#)}“ 1=’
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24 9
&1=&h)— —(1-6,)
i‘)’!
X E3{16(1—£2)— 8+ 3(1—8,)(m(1 — &) —4(1 — &%) +
24 o 9
> s Gl=¢)——5(1-0,)

(1-¢& f
by Lemrna &

24}: 2 9 «3 7] 2'1 « PN
:gsu(l—c#)~m—4(1—6u)c (8—10c;—m2 L+ 38,)
24; )

>~ (1 \8 g} by (18)

2 90 B

Zoas (1= W(l—eu)ci(l—qz}

90 11
=—3<9,u——) &=é)

m 15

RSN

=0

by Lemma 5.
LEmMMA 12, For u=0,1, .., [(m—1)2T and v+=90.1, ... m
P&, 4.) =0 (263

Proof. From Lemma 10 we know that ¢(Z,. ) has a zero in (1, o).

Besides, #(¢,, 7) has a zero at ¢, with

d
7 PG Dl = —44,(1 — &) <o

Hence if u=1, .., [(m——l)/2] then, in view of Lemma 1!, ¢(¢,, 1) must
have a zero in (,, ¢, + (30 1); /m°) as well. Being a polynomial of
degree 3 in ¢ the function ¢(q u» 1) has no other zeros and indeed shouid
be positive on [—1, &, )u (¢, + {36,—1) C‘/m t]. It follows from
Lemma 6 that the interval [4,, 1] is contained in [, + (36, — 1) {,/m™. 1]
and so ¢(&,,1)=20 for re[—1,{,Jul4,, 1] This proves (20} for

640169 3-9
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u=1,., [(m—1)2]. We can arguc the same way in the case u=0;
although Lemma 11 is not available, (19) serves the purpose.

More generally, we have

Lemma 12, (20) holds for p=0,1, ... mand v=0,1,..,m

Proof. That (20) holds for u=m/2 when m is even was pointed out in
Remark 1. It also holds for u=[(m+1)/2], ..., m since

(& H=¢(—¢, —1)
and

==&, (1=0,1,.,m), Ay=—Ap_, (v=0,1,..,m).

Now we are ready to prove

LeMMa 13. Ler p(x) := (1 — x2) g(x) be a polynomial of degree at most
n such that |q(x)| <1 at A,=cos(vr/(n—2)) (v=0, 1, .., n—2). Then at the
roots of 7,(x)=0

|p" () < |7, (x)].
The equality can occur only if p(x)=1vy1,(x) for some constant y, |y| = 1.

Proof. Let y(x):=(1—x?) T,(x), where m :=n—2. Then

x—4a

o) i ) ()

v

and so

< (1—x?)* T (x)
gol//(i) X—he

Using Lemma 9 we deduce that if ¢ is a root of t/(x) =0, then

o ToE) B qlh) $E L)
PO=TT8 L v L)

(21)

In particular

)= m(c)z T,(%.) #(& 1)
O e L T ) - T L) G- L)
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and since T,,(A,) and y'(4,)= —A, T, (4,)—m>T, (1.} are of opposite sign
this gives

o | 1 1 eld A
g ! {2)

:/ (5_’!"\)4

[N
~——

(A

T,(¢)=

r\c xl\t

Now (g(4,)] <1 by hypothesis and ¢#(Z, 4,) =0 according to Lemma 12/,
so comparing (21) and {22) we obtain

1P (EN< T ()

where equality holds if and only if g(A,})=v7,{4,} (v=0, 1, .., #7), e,
p(x)=rv1,(x) for some constant 7y, |y| = 1.

3. ProoF oF THEOREM |

Let p(x):=(1—x?) g(x) be a polynomial of degree at most n such that
lg(Ay<t for v=0,1,..,n—2. Further, let p(x) be rea! for veal x. If
pix)# +1,(x) then by Lemma 13 there ex1sts a constant ¢> 1 such that
iep"{x)l < |t,{x)| at the zeros of 1. Since the zeros of ), are all real and
distinet it follows from Lemma 1 that |cp™{x)]| < {1,/ {x}]| at the zeros of T,
Now Lemma 2 applied in conjunction with Lemma 4 gives

' x+ i) < <1 T8 + iy}
for {x,y)e[—1, 1]xR and k=3,4, ...
Hence (12°) holds. In particular
[P < xRy for k=3.4,.. {

N

RN

~

In this latter inequality, the condition that p(x) is real for real x can be
dropped. To see this, let p(x) ;= (1 — x?} g{x) be a polynomial of degree at
most z such that |g(4,)| <1 for v=0, 1, .., n — 2. Let || p**)}| be attained at
xe€[—1, 1] where p®(x, )= || p*| e™ Consider p,{x) :=Rele “p(x)} =
(1—x%)g,(x) which is a polynomial of degree at most » such that
7, 2)<lg(A) <1 for v=0,1, ..., n—2. Further, p (x) is real for real x
and so by (23)

1P <t®(1) for k=3,4,...
But
19 =e="p* ) x, ) =p¥ix, )< || p%|

and therefore {12) holds.
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4. AN ADDENDUM TO THEOREM 1

Let
—l=1yo<py< - <y, =1

and set

m

o) = (L+x)" (1=x)" [] (x=3,),

u=0

where n,, n, are non-negative integers. Further, let

w(x)
w,(x):= , u=0,1,.,m,
X—¥,
and denote by
au.l<“u.2< sa,u.n~k, .u=0= L..,m

the zeros of w!”. Now suppose that P, is a polynomial of degree
n:=m+n, + n, having the following properties:

(i) it has zeros of multiplicities n;, and #n, at —1 and 1, respectively,

(ii) the polynomial P,(x):=P,(x)/(1+x)" (1 —x)* has alternating
signs at the points yg, ¥1, «p Yom-
It was proved in [4, Theorem 1] that if p(x) :=(1 +x)" (1 —x)™ p(x) is a
polynomial of degree at most » such that

BN <IPLr) w=01.,m, (24)
and p(x) is real for real x then for z lying outside the open disk with
(0t 15 %o.n—x) as diameter, we have
[p2) < | PF(2).

The statement of Theorem 1 in [4] contains a slight inaccuracy, namely,

the hats over p and P, in (24) were inadvertently omitted.
Applying the above result with P,(x):= (1 —x?) T, _,(x) and

} il
Yy 1= —COS n_—_Z’ u=0,1.,n-2

we obtain

THEOREM 2. Let p(x) := (1 — x?) g(x) be a polynomial of degree at most
n such that (11) holds. If p(x) is real for real x then for k=0,1,2, ...

1p“(2)I < ()] (25)
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for |z| Za,, where a, is the largest zero of

d_k{(l - x?) ;JZ(X)}
dx* (1+x) )

According to a result in [3], inequality (25) does not hoid at poinis
immediately to the right of —a, and at those immediately to the left of =z,..
So in Theorem 2 «, cannot be replaced by any smaller number.

5. SoME REMARKS ON THEOREM 1

5.1. In Theorem 1 we have proved, in particular, that for £ =3, 4, ..
the conclusion of (3.1) remains true under the weaker hypothesis that
p{x}/(1—x*) is bounded by ! only at the points x,=cos(vr/{n—2)
v=0, I, .., n— 2. This raises the question if there are » — | other points in
the interval [ —1, 1] with the same property. The answer is in the negative.
Indeed if £ is any closed set of points in { —1, 1] which does not include
all the points x,=cos(vn/(n—2)) then there exists {see [1, p. 5267; also
sec [8, Remark 3 on p. [387) a polynomial ¢ of degree n—2 which is
bounded by 1 in E whereas ¢*(1)>T® (1) for £=1,2,.,1—2. So
p(x) :={1—x%) g(x) serves as a counter example.

PR =2k g% (1) +k(k— 1) g (1
> 2k TU (1) + k(k — 1) T% (1) = [ (1)].

5.2. It is natural to wonder if (12') or at least (12) holds also for
k =2. Further, one may ask if (3.2), (3.3} and (3.4} hold if only (11} is
satisfied. The example p(x):=(l —x?)g(x), where g(x):= —x*+x+ 1,
shows that (3.2) does not hold under the weaker assumption. Indeed
lg(cos(vr/2))| =1 for v=0,1,2 whereas [|p'|={9+19./57)/72>2=
17,(1)]. The other parts of the question will be dlscussed elsewhere.

5.3, Theorem | may also be stated as follows.

THEOREM 1. If p is a polynomial of degree at most n satisfving {4) then

for k=3.4,...

IR ) IR
|

Further, if p(x) is real for real x, and I, := {x+iy: —1<x<1j then

I g |

7 (1= p(2)

max <jt® L (L+iy)l for yeR and k=3,4....

zel,
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